TBU Publications
Repository of TBU Publications

Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals – Effect of the pH

DSpace Repository

Show simple item record


dc.title Pickering oil-in-water emulsions stabilized by carboxylated cellulose nanocrystals – Effect of the pH en
dc.contributor.author Mikulcová, Veronika
dc.contributor.author Bordes, Romain
dc.contributor.author Minařík, Antonín
dc.contributor.author Kašpárková, Věra
dc.relation.ispartof Food Hydrocolloids
dc.identifier.issn 0268-005X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 80
dc.citation.spage 60
dc.citation.epage 67
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.foodhyd.2018.01.034
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0268005X17319252
dc.subject Carboxylated cellulose nanocrystals en
dc.subject pH responsiveness en
dc.subject Pickering emulsions en
dc.subject Stability en
dc.subject Triglyceride oil en
dc.description.abstract Carboxylated cellulose nanocrystals (cCNC) were prepared by oxidation of microcrystalline cellulose with ammonium persulfate and characterized by AFM. Zeta potential was measured at different pH and ionic strength, in presence of mono- and divalent cations. With a length ranging from 50 to 450 nm and a thickness varying between 20 and 60 nm, the cCNC had a surface charge that appeared to be more sensitive to the presence of divalent cations and exhibited a strong pH dependence. The nanocrystals were capable of forming stable oil-in-water emulsions at three different pH of 2, 4 and 7 with a triglyceride oil. The size of emulsion droplets was dependent on oil and cCNC contents. Emulsification was, however, mainly influenced by the pH of the continuous phase, which can be related to reduction of charge on the cCNC surface with decreasing pH. Responsiveness of emulsions towards pH changes was not as dominant as expected, and lowering of pH did not trigger the release of oil from droplets. This can be explained by the strong adsorption of the cCNC, relatively polar triglyceride oil and the limited possibility to induce desorption of nanocrystals from oil surface. © 2018 Elsevier Ltd en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007813
utb.identifier.obdid 43878914
utb.identifier.scopus 2-s2.0-85044370149
utb.identifier.wok 000429959700008
utb.identifier.coden FOHYE
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:46Z
dc.date.available 2018-04-23T15:01:46Z
dc.description.sponsorship 17-05095S, GACR, Grantová Agentura České Republiky; LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship Czech Science Foundation [17-05095S]; Ministry of Education, Youth and Sports of the Czech Republic [LO1504]; TBU in Zlin [IGA/CPS/2017/001]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mikulcová, Veronika
utb.contributor.internalauthor Bordes, Romain
utb.contributor.internalauthor Minařík, Antonín
utb.contributor.internalauthor Kašpárková, Věra
utb.fulltext.affiliation Veronika Mikulcová a , Romain Bordes b, * , Antonín Minařík c, d , Věra kašpárková a, c, ** a Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic b Chalmers University of Technology, Department of Chemical and Biological Engineering, SE-412 96 Göteborg, Sweden c Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic d Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic * Corresponding author. ** Corresponding author. Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic. E-mail addresses: bordes@chalmers.se (R. Bordes), vkasparkova@ft.utb.cz (V. Kašpárková ).
utb.fulltext.dates Available online 6 February 2018
utb.fulltext.references Albright, L. F. (2008). Measuring physical properties. In Albright's chemical engineering handbook (pp. 1531e1537). CRC Press. AOCS, & Firestone, D. (Eds.). (2011). Official methods and recommended practices of the American Oil Chemists' Society (6th ed.). Champaign, IL: AOCS Press. Araki, J. (2013). Electrostatic or steric? - preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter, 9(16), 4125e4141. Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 100e102, 503e546. Bai, W., Holbery, J., & Li, K. (2009). A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose, 16(3), 455e465. Barth, H. G. (1984). Modern methods of particle size analysis. New York: Wiley. Binks, B. P. (2002). Particles as surfactantsdsimilarities and differences. Current Opinion in Colloid & Interface Science, 7(1e2), 21e41. Binks, B. P., & Whitby, C. P. (2005). Nanoparticle silica-stabilised oil-in-water emulsions: Improving emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253(1), 105e115. Boluk, Y., Lahiji, R., Zhao, L., & McDermott, M. T. (2011). Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1e3), 297e303. Cao, X., Dong, H., & Li, C. M. (2007). New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules, 8(3), 899e904. Capron, I., Rojas, O. J., & Bordes, R. (2017). Behavior of nanocelluloses at interfaces. Current Opinion in Colloid & Interface Science, 29, 83e95. Chen, Q.-H., Zheng, J., Xu, Y.-T., Yin, S.-W., Liu, F., & Tang, C.-H. (2018). Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids, 75(Supplement C), 125e130. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.-L., Heux, L., Dubreuil, F., & Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57e65. Filson, P. B., Dawson-Andoh, B. E., & Schwegler-Berry, D. (2009). Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry, 11(11), 1808e1814. Frelichowska, J., Bolzinger, M. A., & Chevalier, Y. (2009). Pickering emulsions with bare silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 343(1e3), 70e74. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479e3500. Hu, Z., Ballinger, S., Pelton, R., & Cranston, E. D. (2015). Surfactant-enhanced cellulose nanocrystal Pickering emulsions. Journal of Colloid and Interface Science, 439, 139e148. Hu, Z., Patten, T., Pelton, R., & Cranston, E. D. (2015). Synergistic stabilization of emulsions and emulsion gels with water-soluble polymers and cellulose nanocrystals. ACS Sustainable Chemistry & Engineering, 3(5), 1023e1031. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71e85. Jia, Y., Zhai, X., Fu, W., Liu, Y., Li, F., & Zhong, C. (2016). Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohydrate Polymers, 151, 907e915. Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., et al. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose, 22(2), 935e969. Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2011). New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir, 27(12), 7471e7479. Kalashnikova, I., Bizot, H., Cathala, B., & Capron, I. (2012). Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules, 13(1), 267e275. Keowmaneechai, E., & McClements, D. J. (2002). Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. Journal of Agricultural and Food Chemistry, 50(24), 7145e7153. Lam, S., Velikov, K. P., & Velev, O. D. (2014). Pickering stabilization of foams and emulsions with particles of biological origin. Current Opinion in Colloid & Interface Science, 19(5), 490e500. Lee, K.-Y., Blaker, J. J., Heng, J. Y. Y., Murakami, R., & Bismarck, A. (2014). pH-triggered phase inversion and separation of hydrophobised bacterial cellulose stabilised Pickering emulsions. Reactive and Functional Polymers, 85, 208e213. Lémery, E., Briançon, S., Chevalier, Y., Bordes, C., Oddos, T., Gohier, A., et al. (2015). Skin toxicity of surfactants: Structure/toxicity relationships. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 166e179. Leung, A. C. W., Hrapovic, S., Lam, E., Liu, Y., Male, K. B., Mahmoud, K. A., et al. (2011). Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7(3), 302e305. Mikulcová, V., Bordes, R., & Kašpárková, V. (2016). On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 61, 780e792. Montanari, S., Roumani, M., Heux, L., & Vignon, M. R. (2005). Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation. Macromolecules, 38(5), 1665e1671. Peng, B. L., Dhar, N., Liu, H. L., & Tam, K. C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering, 89(5), 1191e1206. Phan-Xuan, T., Thuresson, A., Skepö, M., Labrador, A., Bordes, R., & Matic, A. (2016). Aggregation behavior of aqueous cellulose nanocrystals: The effect of inorganic salts. Cellulose, 23(6), 3653e3663. Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H., & Gray, D. G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3), 170e172. Ridel, L., Bolzinger, M.-A., Gilon-Delepine, N., Dugas, P.-Y., & Chevalier, Y. (2016). Pickering emulsions stabilized by charged nanoparticles. Soft Matter, 12(36), 7564e7576. Sacui, I. A., Nieuwendaal, R. C., Burnett, D. J., Stranick, S. J., Jorfi, M., Weder, C., et al. (2014). Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces, 6(9), 6127e6138. Saidane, D., Perrin, E., Cherhal, F., Guellec, F., & Capron, I. (2016). Some modification of cellulose nanocrystals for functional Pickering emulsions. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 374(2072). Shimizu, M., Fukuzumi, H., Saito, T., & Isogai, A. (2013). Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. International Journal of Biological Macromolecules, 59, 99e104. Wahlgren, M., Bergenstahl, B., Nilsson, L., & Rayner, M. (2015). Formulation of emulsions. In Engineering aspects of food emulsification and homogenization (pp. 51e100). CRC Press. Wang, W., Du, G., Li, C., Zhang, H., Long, Y., & Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion. Carbohydrate Polymers, 151, 1e8. Wen, C., Yuan, Q., Liang, H., & Vriesekoop, F. (2014). Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers, 112, 695e700. Winuprasith, T., & Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32(2), 383e394. Wu, J., & Ma, G.-H. (2016). Recent studies of pickering Emulsions: Particles make the difference. Small, 12(34), 4633e4648. Xiao, J., Li, Y., & Huang, Q. (2016). Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science & Technology, 55, 48e60. Yan, H., Chen, X., Song, H., Li, J., Feng, Y., Shi, Z., et al. (2017). Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids, 72(Supplement C), 127e135. Zhang, Y., Nypelö, T., Salas, C., Arboleda, J., Hoeger, I. C., & Rojas, O. J. (2013). Cellulose nanofibrils. Journal of Renewable Materials, 1(3), 195e211.
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (17-05095S) and by the Ministry of Education, Youth and Sports of the Czech Republic (Program NPU I, LO1504). The support of internal grants of TBU in Zlín, IGA/CPS/2017/001 is also acknowledged. The authors thank Ms. Eliška Siudová for technical assistance.
utb.scopus.affiliation Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic; Chalmers University of Technology, Department of Chemical and Biological Engineering, Göteborg, Sweden; Centre of Polymer Systems, Tomas Bata University in Zlin, nám. T. G. Masaryka 5555, Zlin, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic
utb.fulltext.projects 17-05095S
utb.fulltext.projects LO1504
utb.fulltext.projects IGA/CPS/2017/001
Find Full text

Files in this item

Show simple item record