TBU Publications
Repository of TBU Publications

Antibacterial performance of alginic acid coating on polyethylene film

DSpace Repository

Show simple item record

dc.title Antibacterial performance of alginic acid coating on polyethylene film en
dc.contributor.author Karbassi, Elika
dc.contributor.author Asadinezhad, Ahmad
dc.contributor.author Lehocký, Marián
dc.contributor.author Humpolíček, Petr
dc.contributor.author Vesel, Alenka
dc.contributor.author Novák, Igor
dc.contributor.author Sáha, Petr
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1422-0067 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2014
utb.relation.volume 15
utb.relation.issue 8
dc.citation.spage 14684
dc.citation.epage 14696
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI AG)
dc.identifier.doi 10.3390/ijms150814684
dc.relation.uri http://www.mdpi.com/1422-0067/15/8/14684
dc.subject alginic acid en
dc.subject polyethylene en
dc.subject surface modification en
dc.subject antibacterial activity en
dc.subject polysaccharide en
dc.description.abstract Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1003887
utb.identifier.obdid 43872040
utb.identifier.scopus 2-s2.0-84929694569
utb.identifier.wok 000341519600092
utb.identifier.pubmed 25196604
utb.source j-wok
dc.date.accessioned 2014-11-19T09:24:01Z
dc.date.available 2014-11-19T09:24:01Z
dc.description.sponsorship Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of Czech Republic, within framework of project "Centre of Polymer Systems" [CZ.1.05./2.1.00/03.0111]; Grant Agency of Czech Republic [GA13-08944S]; Ministry of Education of the Slovakia; Slovak Academy of Sciences [2/0199/14]
dc.rights Attribution 3.0 International
dc.rights.uri http://creativecommons.org/licenses/by/3.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Elika Karbassi 1, Ahmad Asadinezhad 1, Marian Lehocký 2,*, Petr Humpolíček 2, Alenka Vesel 3, Igor Novák 4 and Petr Sáha 2 1 Department of Chemical Engineering, Isfahan University of Technology, Esfahan 84156-83111, Iran; E-Mails: e.karbassi@ce.iut.ac.ir (E.K.); asadinezhad@cc.iut.ac.ir (A.A.) 2 Centre of Polymer Systems, Tomas Bata University in Zlín, Zlín 76001, Czech Republic; E-Mails: humpolicek@uni.utb.cz (P.H.); saha@utb.cz (P.S.) 3 Department of Surface Engineering, Jožef Stefan Institute, Ljubljana 1000, Slovenia; E-Mail: alenka.vesel@ijs.si 4 Polymer Institute, Slovak Academy of Sciences, Bratislava 84236, Slovakia; E-Mail: upolnovi@savba.sk * Author to whom correspondence should be addressed; E-Mail: lehocky@post.cz; Tel.: +420-608-616-048; Fax: +420-576-031-444.
utb.fulltext.dates Received: 9 June 2014; in revised form: 11 July 2014 / Accepted: 29 July 2014 / Published: 21 August 2014
utb.fulltext.references 1. Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. 2. Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. 2002, 36, 143–206. 3. Desmet, T.; Morent, R.; de Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2007, 10, 2351–2378. 4. Mozetic, M.; Ostrikov, K.; Ruzic, D.N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O.B.; et al. Recent advances in vacuum sciences and applications. J. Phys. D: Appl. Phys. 2014, 47, 153001–153023. 5. Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. 6. Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. 7. Ayres, N. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1, 769–777. 8. Waschinski, C.J. Tiller, J.C. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 2005, 6, 235–243. 9. Elsabee, M.Z.; Abdou, E.S.; Nagy, K.S.A.; Eweis, M. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydr. Polym. 2008, 71, 187–195. 10. El-tahlawy, K.F.; El-bendary, M.A.; El-hendawy, A.G.; Hudson, S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr. Polym. 2005, 60, 421–430. 11. Ikeda, A.; Takemura, A.; Ono, H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 2000, 42, 421–425. 12. Yoshioka, T.; Tsuru, K.; Hayakawa, S.; Osaka, A. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials 2003, 24, 2889–2894. 13. Morra, M.; Cassinelli, C. Simple model for the XPS analysis of polysaccharide-coated surfaces. Surf. Interface Anal. 1998, 26, 742–746. 14. Morra, M.; Cassinelli, C. Surface studies on a model cell-resistant system. Langmuir 1999, 15, 4658–4663. 15. Morra, M.; Cassinelli, C. Non-fouling properties of polysaccharide-coated surfaces. J. Biomater. Sci-Polym. E 1999, 10, 1107–1124. 16. Morra, M.; Cassinelli, C. Force measurements on cell repellant and cell adhesive alginic acid coated surfaces. Colloid Surf. B 2000, 18, 249–259. 17. Bilek, F.; Krizova, T.; Lehocky, M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloid Surf. B 2011, 88, 440–447. 18. Bilek, F.; Sulovska, K.; Lehocky, M.; Saha, P.; Humpolicek, P.; Mozetic, M.; Junkar, I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloid Surf. B 2013, 102, 842–848. 19. Asadinezhad, A.; Novak, I.; Lehocky, M.; Sedlarik, V.; Vesel, A.; Junkar, I.; Saha, P.; Chodak, I. A physicochemical approach to render antibacterial surfaces on medical-grade PVC. Plasma Process. Polym. 2010, 7, 504–514. 20. Asadinezhad, A.; Novak, I.; Lehocky, M.; Sedlarik, V.; Vesel, A.; Junkar, I.; Saha, P.; Chodak, I. An in vitro bacterial adhesion assessment of surface modified medical-grade PVC. Colloid Surf. B 2010, 77, 246–256. 21. Asadinezhad, A.; Novak, I.; Lehocky, M.; Bilek, F.; Vesel, A.; Junkar, I.; Saha, P.; Popelka, A. Polysaccharide coatings on medical-grade PVC: A probe into surface characteristics and bacterial adhesion extent. Molecules 2010, 15, 1007–1027. 22. Fan, C.W.; Lee, S.C. Surface free energy effects in sputter-deposited WNx films. Mater. Trans. 2007, 48, 2449–2453. 23. Parija, S.C. Textbook of Microbiology & Immunology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 71–74.
utb.fulltext.sponsorship This work was supported by Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project “Centre of Polymer Systems” (reg. number: CZ.1.05./2.1.00/03.0111). The authors also thank the Grant Agency of Czech Republic (GA13-08944S) and Ministry of Education of the Slovakia and Slovak Academy of Sciences project (Grant No. 2/0199/14) for financial support.
utb.fulltext.projects CZ.1.05./2.1.00/03.0111
utb.fulltext.projects GA13-08944S
utb.fulltext.projects 2/0199/14
Find Full text

Files in this item

Show simple item record

Attribution 3.0 International Except where otherwise noted, this item's license is described as Attribution 3.0 International