Publikace UTB
Repozitář publikační činnosti UTB

Recent Progress in Surface Modification of Polyvinyl Chloride

Repozitář DSpace/Manakin

Zobrazit minimální záznam

dc.title Recent Progress in Surface Modification of Polyvinyl Chloride en Asadinezhad, Ahmad Lehocký, Marián Sáha, Petr Mozetič, Miran
dc.relation.ispartof Materials
dc.identifier.issn 1996-1944 OCLC, Ulrich, Sherpa/RoMEO, JCR 2012
utb.relation.volume 5
utb.relation.issue 12
dc.citation.spage 2937
dc.citation.epage 2959
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI AG) en
dc.identifier.doi 10.3390/ma5122937
dc.subject polyvinyl chloride en
dc.subject surface modification en
dc.subject surface treatment en
dc.description.abstract Surface modification of polymers has become a vibrant field of research on account of a myriad of rationales which stimulated numerous efforts. The current paper serves as a condensed survey of the advances made through different approaches adopted for tuning the surface properties of polyvinyl chloride as a homopolymer extensively used on a large scale. Though it does not address all challenges involved, this paper communicates and highlights, through concise discussion, the findings of the efforts undertaken in recent decades. It is ultimately concluded with a perspective of the huge capacities and promising future directions. en
utb.faculty University Institute
utb.identifier.rivid RIV/70883521:28610/12:43868385!RIV13-MSM-28610___
utb.identifier.obdid 43868486
utb.identifier.scopus 2-s2.0-84876415735
utb.identifier.wok 000312608500029
utb.source j-wok 2013-02-02T01:12:52Z 2013-02-02T01:12:52Z
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Lehocký, Marián
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Ahmad Asadinezhad 1, Márian Lehocký 2,*, Petr Sáha 2 and Miran Mozetič 3 1 Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; E-Mail: 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín 76001, Czech Republic; E-Mail: 3 Plasma Laboratory, Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana SI1000, Slovenia; E-Mail: * Author to whom correspondence should be addressed; E-Mail:; Tel.: +420-608-616-048; Fax: +420-576-031-444.
utb.fulltext.dates Received: 26 September 2012; in revised form: 11 December 2012 / Accepted: 11 December 2012 / Published: 18 December 2012
utb.fulltext.references 1. Clark, D.T.; Feast, W.J. Polymer Surfaces; John Wiley: New York, NY, USA, 1978. 2. Garbassi, F.; Morra, M.; Occhiello, E. Polymer Surfaces: From Physics to Technology; John Wiley: New York, NY, USA, 2002. 3. Stamm, M. Polymer Surfaces and Interfaces; Springer: Berlin, Germany, 2008. 4. Morent, R.; de Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011, 8, 171–190. 5. Vasita, R.; Shanmugam, K.; Katti, D.S. Improved biomaterials for tissue engineering applications: Surface modification of polymers. Curr. Top. Med. Chem. 2008, 8, 341–353. 6. Wilkes, C.; Summers, J.; Daniels, C. PVC Handbook; Hanser: Munich, Germany, 2005. 7. Murphy, J. Additives for Plastics Handbook; Elsevier: Oxford, UK, 2001. 8. Wypych, G. Handbook of Plasticizers; William Andrew Publishing: New York, NY, USA, 2004. 9. Williams, D.F. Biocompatibility in Clinical Practice; CRC Press: Boca Raton, FL, USA, 1982. 10. Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. 11. Denes, F.S.; Manlache, S. Macromolecular plasma-chemistry: An emerging field of polymer science. Prog. Polym. Sci. 2004, 29, 815–85. 12. Chu, P.K.; Chen, J.Y.; Wang, N.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. 2002, R36, 143–206. 13. Uyama, Y.; Kato, K.; Ikada, Y. Surface modification of polymers by grafting. Adv. Polym. Sci. 1998, 137, 1–39. 14. Bhattacharyaa, A.; Misra, B.N. Grafting: A versatile means to modify polymers Techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. 15. Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. 16. Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. 17. Raynor, J.E.; Capadon, J.R.; Collard, D.M.; Petrie, T.A.; Garcia, A.J. Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials. Biointerphases 2009, 4, FA3–FA16. 18. Olivier, A.; Meyer, F.; Raquez, J.M.; Damman, P.; Dubois, P. Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces. Prog. Polym. Sci. 2012, 37, 157–181. 19. Gooding, J.J.; Ciampi, S. The molecular level modification of surfaces: From self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 2011, 40, 2704–2718. 20. Cox, J.K.; Eisenberg, A.; Lennox, R.B. Patterned surfaces via self-assembly. Curr. Opin. Colloid Interface Sci. 1999, 4, 52–59. 21. Strobel, M.; Lyons, C.S.; Mittal, K.L. Plasma Surface Modification of Polymers: Relevance to Adhesion; VSP: Zeist, the Netherlands, 1994. 22. D'Agostino, R.; Favia, P.; Fracasi, F. Plasma Processing of Polymers; Kluwer: Dordrecht, the Netherlands, 1997. 23. Inagaki, N. Plasma Surface Modification and Plasma Polymerization; CRC Press: Boca Raton, FL, USA, 1996. 24. D'Agostino, R.; Favia, P.; Kawai, Y.; Ikegami, H.; Sato, N.; Arefi-khonsari, F. Advanced Plasma Technology; Wiley-VCH: Berlin, Germany, 2007. 25. Kondyurin, A.V.; Bilek, M. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space; Elsevier: Amsterdam, the Netherlands, 2008. 26. Totten, G.E.; Liang, H. Surface Modification and Mechanisms: Friction, Stress, and Reaction Engineering; CRC Press: Boca Raton, FL, USA, 2004. 27. Pauleau, Y. Materials Surface Processing by Directed Energy Techniques; Elsevier: Amsterdam, the Netherlands, 2006. 28. Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 2009, 34, 156–193. 29. Mittal, K.L.; Lee, K.W. Polymer Surfaces and Interfaces: Characterization, Modification, and Application; VSP: Zeist, the Netherlands, 1997. 30. Pocius, A.V. Adhesion and Adhesives Technology: An Introduction; Hanser: Munich, Germany, 2002. 31. Kuang, P.; Lee, J.H.; Kim, C.H.; Ho, K.M.; Constant, K. Improved surface wettability of polyurethane films by ultraviolet ozone treatment. J. Appl. Polym. Sci. 2010, 118, 3024–3033. 32. Michael, M.N.; El-zaher, N.A.; Ibrahim, S.F. Investigation into surface modification of some polymeric fabrics by UV/ozone treatment. Polym. Plast. Technol. Eng. 2004, 43, 1041–1052. 33. Allcock, H.R. Introduction to Materials Chemistry; John Wiley: New York, NY, USA, 2008. 34. Advincula, R.C.; Brittain, W.J.; Kenneth, C.C. Polymer Brushes: Synthesis, Characterization, Applications; Wiley-VCH: Berlin, Germany, 2004. 35. Zdyrko, B.; Luzinov, I. Polymer brushes by the grafting-to method. Macromol. Rapid Commun. 2011, 32, 859–869. 36. Minko, S. Responsive polymer brushes. Polym. Rev. 2006, 46, 397–420. 37. Mittal, V. Surface Modification of Nanotube Fillers; Wiley-VCH: Berlin, Germany, 2011. 38. Fristrup, C.J.; Jankova, K.; Hvilsted, S. Surface-initiated atom transfer radical polymerization—A technique to develop biofunctional coatings. Soft Matter 2009, 5, 4623–4634. 39. Xu, F.J.; Neoh, K.G.; Kang, E.T. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog. Polym. Sci. 2009, 34, 719–761. 40. Gérard, E.; Bessy, E.; Salvagnini, C.; Rerat, V.; Momtaz, M.; Hénard, G.; Marmey, P.; Verpoort, T.; Marchand-Brynaert, J. Surface modifications of polypropylene membranes used for blood filtration. Polymer 2011, 52, 1223–1233. 41. Shtilman, M.I. Immobilization on Polymers; VSP: Zeist, the Netherlands, 1993. 42. Adamson, A.W. Physical chemistry of Surfaces; John Wiley: New York, NY, USA, 1967. 43. Wen, X.Q.; Liu, X.H.; Liu, G.S. Improvement in the hydrophilic property of inner surface of polyvinyl chloride tube by DC glow discharge plasma. Vacuum 2010, 85, 406–410. 44. Wen, X.Q.; Liu, X.H.; Liu, G.S. Prevention of plasticizer leaching from the inner surface of narrow polyvinyl chloride tube by DC glow discharge plasma. IEEE. Trans. Plasma Sci. 2010, 38, 3152–3155. 45. Xiao-jing, L.; Guan-jun, Q.; Jie-rong, C. The effect of surface modification by nitrogen plasma on photocatalytic degradation of polyvinyl chloride films. Appl. Surf. Sci. 2008, 254, 6568–6574. 46. Kucherenko, O.B.; Kohlert, C.; Sosnov, E.A.; Malygin, A.A. Synthesis and properties of polyvinyl chloride films with modified surface. Russ. J. Appl. Chem. 2006, 79, 1316–1320. 47. Kucherenko, O.B.; Kohlert, C.; Sosnov, E.A.; Malygin, A.A. Influence of the physicochemical treatment procedure on the morphology and properties of the polyvinyl chloride film surface. Russ. J. Appl. Chem. 2006, 79, 1857–1861. 48. Asadinezhad, A.; Novak, I.; Lehocky, M.; Sedlarik, V.; Vesel, A.; Junkar, I.; Saha, P.; Chodak, I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process. Polym. 2010, 7, 504–514. 49. Asadinezhad, A.; Novak, I.; Lehocky, M.; Sedlarik, V.; Vesel, A.; Junkar, I.; Saha, P.; Chodak, I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloid Surf. B 2010, 77, 246–256. 50. Asadinezhad, A.; Novak, I.; Lehocky, M.; Bilek, F.; Vesel, A.; Junkar, I.; Saha, P.; Popelka, A. Polysaccharides coatings on medical-grade PVC: A probe into surface characteristics and the extent of bacterial adhesion. Molecules 2010, 15, 1007–1027. 51. Li, R.; Chen, J. Studies of wettability of medical PVC by remote nitrogen plasma. Plasma Sci. Technol. 2006, 8, 325–328. 52. Li, R.; Chen, J. Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma. Chin. Sci. Bull. 2006, 51, 615–619. 53. Zhang, W.; Chu, P.K.; Ji, J.; Zhang, Y.; Liu, X.; Fu, R.K.Y.; Ha, P.C.T.; Yan, Q. Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials 2006, 27, 44–51. 54. Sowe, M.; Novák, I.; Vesel, A.; Junkar, I.; Lehocký, M.; Sáha, P.; Chodak, I. Analysis and characterization of printed plasma-treated polyvinyl chloride. Int. J. Polym. Anal. Charact. 2009, 14, 641–651. 55. Sowe, M.; Polaskova, M.; Kuritka, I.; Sedlacek, T.; Merchan, M. Analysis of antibacterial action of polyvinyl chloride surface modified with gentian violet. Int. J. Polym. Anal. Charact. 2009, 14, 678–685. 56. Bento, W.C.A.; Honda, R.Y.; Kayama, M.E.; Schreiner, W.H.; Cruz, N.C.; Rangel, E.C. Hydrophilization of PVC surfaces by argon plasma immersion ion implantation. Plasmas Polym. 2003, 8, 1–11. 57. Rangel, E.C.; de Souza, ES.; De Moraes, F.S.; Marins, N.M.S.; Schreiner, W.H.; Cruz, N.C. Development of amorphous carbon protective coatings on poly(vinyl chloride). Thin Solid Films 2010, 518, 2750–2756. 58. Rangel, E.C.; Dos Santos, N.M.; Bortoleto, J.R.R.; Durrant, S.F.; Schreiner, W.H.; Honda, R.Y.; Rangel, R.C.C.; Cruz, N.C. Treatment of PVC using an alternative low energy ion bombardment procedure. Appl. Surf. Sci. 2011, 258, 1854–1861. 59. Zhang, W.; Chu, P.K.; Ji, J.; Zhang, Y.; Jiang, Z. Effects of O2 and H2O plasma immersion ion implantation on surface chemical composition and surface energy of poly vinyl chloride. J. Appl. Polym. Sci. 2006, 252, 7884–7889. 60. Khorasani, M.T.; Mirzadeh, H. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag—In vitro assay. Radiat. Phys. Chem. 2007, 76, 1011–1016. 61. Jierong, C.; Jing-Lian, Y.; Yun-Ze, Z. Surface modification of medical PVC by remote oxygen plasma. Compo. Interface 2004, 11, 123–130. 62. Ru, L.; Jie-Rong, C. Studies on wettability of medical poly(vinyl chloride) by remote argon plasma. Appl. Surf. Sci. 2006, 252, 5076–5082. 63. Hu, J.; Zhang, C.; Cong, J.; Toyoda, H.; Nagatsu, M.; Meng, Y. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell. J. Power Sources 2011, 196, 4483–4490. 64. Liu, P.; Chen, Y. Surface sulfonation of Polyvinyl Chloride by plasma for antithrombogenicity. Plasma Sci. Technol. 2004, 6, 2328–2332. 65. Balazs, D.J.; Triandafillu, K.; Wood, P.; Chevolot, Y.; van Delden, C.; Harms, H.; Hollenstein, C.; Mathieu, H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 2004, 25, 2139–2151. 66. Anuradha, P.; Anu Kaliani, A. Surface characterization of polyvinyl chloride membranes modified by plasma treatment. Optoelectron. Adv. Mater. 2009, 3, 1094–1098. 67. Jung, C.H.; Hwang, I.T.; Kwon, H.J.; Nho, Y.C.; Choi, J.H. Patterning of cells on a PVC film surface functionalized by ion irradiation. Polym. Adv. Technol. 2010, 21, 135–138. 68. Cota, L.; Avalos-Borja, M.; Adem, E.; Burillo, G. Comparison of irradiation effects of electrons and gamma rays on PVC samples. Radiat. Phys. Chem. 1994, 44, 579–582. 69. Cota, L.; Adem, E.; Yacamán, M.J. Interaction of an electron beam with a polymer surface: Study of polyvinyl chloride (PVC) using auger electron spectroscopy. Appl. Surf. Sci. 1986, 27, 106–113. 70. Manfredini, M.; Marchetti, A.; Atzei, D.; Eisener, B.; Malagoli, M.; Galavotti, F.; Rossi, A. Radiation-induced migration of additives in PVC-based biomedical disposable devices. Part 1. Surface morphology by AFM and SEM/XEDS. Surf. Interface Anal. 2003, 35, 395–402. 71. Sinha, D.; Swu, T.; Tripathy, S.P.; Mishra, R.; Dwivedi, K.K.; Fink, D. Gamma-photon induced modification of polyvinyl chloride (PVC) film. Radiat. Eff. Defect. Solid. 2003, 158, 593–598. 72. de Queiroz, A.A.A.; Barrak, E.R.; Gil, H.A.C.; Higa, O.Z. Surface studies of albumin immobilized onto PE and PVC films. J. Biomater. Sci. Polym. Ed. 1997, 7, 667–681. 73. Rios, P.; Bertorello, H. Surface modification of polyvinyl chloride with biodegradable monomers. J. Appl. Polym. Sci. 1997, 64, 1195–1201. 74. Kurose, K.; Okuda, T.; Nakai, S.; Tsai, T.Y.; Nishijima, W.; Okada, M. Hydrophilization of polyvinyl chloride surface by ozonation. Surf. Rev. Lett. 2008, 15, 711–715. 75. Okuda, T.; Kurose, K.; Nishijima, W.; Okada, M. Separation of polyvinyl chloride from plastic mixture by froth flotation after surface modification with ozone. Ozone Sci. Eng. 2007, 29, 373–377. 76. Kurian, G.; Sharma, C.P. Surface modification of polyvinyl chloride towards blood compatibility. Bull. Mater. Sci. 1984, 6, 1087–1091. 77. Reyes-Labarta, J.; Herrero, M.; Tiemblo, P.; Mijangos, C.; Reinecke, H. Wetchemical surface modification of plasticized PVC. Characterization by FTIR-ATR and Raman microscopy. Polymer 2003, 44, 2263–2269. 78. McGinty, K.M.; Brittain, W.J. Hydrophilic surface modification of poly(vinyl chloride) film and tubing using physisorbed free radical grafting technique. Polymer 2008, 49, 4350–4357. 79. Sacristán, J.; Reinecke, H.; Mijangos, C. Surface modification of PVC films in solvent-non solvent mixtures. Polymer 2000, 41, 5577–5582. 80. Sacristán, J.; Mijangos, C.; Reinecke, H.; Spells, S.; Yarwood, J. Selective surface modification of PVC films as revealed by confocal Raman microspectroscopy. Macromolecules 2000, 33, 6134–6139. 81. Sacristán, J.; Mijangos, C.; Reinecke, H.; Spells, S.; Yarwood, J. Depth profiling of modified PVC surfaces using confocal Raman microspectroscopy. Macromol. Rapid Commun. 2000, 21, 894–896. 82. Lakshmi, S.; Jayakrishnan, A. Synthesis, surface properties and performance of thiosulphate-substituted plasticized polyvinyl chloride. Biomaterials 2002, 23, 4855–4862. 83. James, N.R.; Jayakrishnan, A. Surface thiocyanation of plasticized polyvinyl chloride and its effect on bacterial adhesion. Biomaterials 2003, 24, 2205–2212. 84. Yoshizaki, T.; Tabuchi, N.; van Oeveren, W.; Shibamiya, A.; Koyama, T.; Sunamori, M. PMEA polymer-coated PVC tubing maintains anti-thrombogenic properties during in vitro whole blood circulation. Int. J. Artif. Organs 2005, 28, 834–840. 85. Zou, Y.; Kizhakkedathu, J.N.; Brooks, D.E. Surface modification of polyvinyl chloride sheets via growth of hydrophilic polymer brushes. Macromolecules 2009, 42, 3258–3268. 86. Zou, Y.; Lai, B.F.; Kizhakkedathu, J.N.; Brooks, D.E. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion. Macromol. Biosci. 2010, 10, 1432–1443. 87. Zha, Z.; Ma, Y.; Yue, X.; Liu, M.; Dai, Z. Self-assembled hemocompatible coating on poly (vinyl chloride) surface. Appl. Surf. Sci. 2009, 256, 805–814. 88. D’yakova, A.K.; Trifonov, S.A.; Sosnov, E.A.; Malygin, A.A. Effect of chemical modification on structural and energy characteristics of the surface of polyethylene and polyvinyl chloride films. Russ. J. Appl. Chem. 2009, 82, 622–629. 89. Xie, Y.; Yang, Q. Surface modification of poly(vinyl chloride) for antithrombogenicity study. J. Appl. Polym. Sci. 2002, 85, 1013–1018. 90. Zimmermann, H.; Holländer, A.; Behnisch, J. Chemical surface modification of PVC by thiol-substituted hydroxybenzophenone. Polym. Degrad. Stabil. 1992, 36, 149–153. 91. Triandafillu, K.; Balazs, D.J.; Aronsson, B.O.; Descouts, P.; Quoc, P.T.; van Delden, C.; Mathieu, H.J.; Harms, H. Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 2003, 24, 1507–1518. 92. Kaczmarek, H.; Kowalonek, J.; Szalla, A.; Sionkowska, A. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf. Sci. 2002, 507–510, 883–888. 93. Lamba, N.M.K.; Courtney, J.M.; Gaylor, J.D.S.; Lowe, G.D.O. In vitro investigation of the blood response to medical grade PVC and the effect of heparin on the blood response. Biomaterials 2000, 21, 89–96. 94. Rad, A.Y.; Ayhan, H.; Kisa, U.; Piskin, E. Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces. J. Biomater. Sci. Polym. Ed. 1998, 9, 915–929.
utb.fulltext.sponsorship Financial supports by the Ministry of Education, Youth, and Sports of the Czech Republic (CZ.1.05/2.1.00/03.0111), the Slovenia Ministry of Higher Education, Science, and Technology (Program P2-0082-2) and Ad Futura L7-4009 are gratefully acknowledged.
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects P2-0082-2
utb.fulltext.projects L7-4009
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported