TBU Publications
Repository of TBU Publications

Application of Protein Hydrolysate from Chrome Shavings for Polyvinyl Alcohol-based Biodegradable Material

DSpace Repository

Show simple item record

dc.title Application of Protein Hydrolysate from Chrome Shavings for Polyvinyl Alcohol-based Biodegradable Material en
dc.contributor.author Křesálková, Martina
dc.contributor.author Hnaníčková, L.
dc.contributor.author Kupec, Jan
dc.contributor.author Kolomazník, Karel
dc.contributor.author Alexy, Pavol
dc.relation.ispartof Journal of the American Leather Chemists Association
dc.identifier.issn 0002-9726 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2002
utb.relation.volume 97
utb.relation.issue 4
dc.citation.spage 143
dc.citation.epage 149
dc.type article
dc.language.iso en
dc.publisher American Leather Chemists Association (ALCA) en
dc.relation.uri http://cat.inist.fr/?aModele=afficheN&cpsidt=13603652
dc.subject bílkovina cs
dc.subject hydrolýza cs
dc.subject chróm cs
dc.subject polyvinylalkohol cs
dc.subject rozklad cs
dc.subject anaerobní cs
dc.subject protein en
dc.subject hydrolysis en
dc.subject chromium en
dc.subject polyvinylalcohole en
dc.subject degradation en
dc.subject anaerobic en
dc.description.abstract In this work, the additive applied for this purpose was protein hydrolysate producedd by enzymatic hydrolysis of chrometanned shavings. It was used for modifying polyvinyl alcohol which had been processed into water-soluble films often employed in agriculture. This material, after being deposited in soil, undergoes biological degradation (first of all anaerobic) which is supported to a large extent by the addition of protein hydrolysate in particular. For this reason, anaerobic biodegradability tests were performed (volumetric test determining methanogenic activity) and the corresponding percentage of degradation was determined based on a balance of produced biogas and inorganic carbon in the aqueous phase. Polyvinyl alcohol is relatively poorly degradable under aerobic conditions while protein hydrolysate, on the contrary, undergoes biodegradation at a fairly fast rate. From a comparison between the attained degradation degree of blow-extruded film and that of mechanically prepared compounds it follows that the limiting factor of degradability, apart from added protein hydrolysate, is also a chemical reaction between polyvinyl alcohol and hydrolysate taking place during the heat processing of film. It was confirmed that protein hydrolysate from chrome shavings markedly increases biodegradation of material (depending on its content in the plastic matrix), reduces the final cost of product and, last but not least, to some extent also exerts a positive influence on mechanical properties of the film. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1000106
utb.identifier.rivid RIV/70883521:28110/02:63500558
utb.identifier.obdid 11052425
utb.identifier.scopus 2-s2.0-0036539133
utb.identifier.wok 000178150100003
utb.source j-riv
utb.contributor.internalauthor Křesálková, Martina
utb.contributor.internalauthor Kupec, Jan
utb.contributor.internalauthor Kolomazník, Karel
utb.fulltext.affiliation M. KRESÁLKOVÁ, L. HNANÍCKOVÁ, J. KUPEC*, K. KOLOMAZNÍK Tomas Bata University in Zlín Faculty of Technology in Zlín NÁM. TGM 275, 762 72 ZLÍN, CZECH REPUBLIC and P. ALEXY Slovak University of Technology Faculty of Chemical Technology Dept. Plastics and Rubber RADLINSKÉHO 9, 812 37 BRATISLAVA, SLOVAKIA * Corresponding Author
utb.fulltext.dates -
utb.fulltext.references 1. Brown, E. M., Thompson, C. J. and Taylor, M. M.; JALCA 89, 215-220, 1994. 2. Cabeza, L. F., Taylor, M. M., DiMaio, G. L., Brown, E. M., Marmer, W. N., Carrió, R, Celma, P. J., and Cot, J.; Waste Management 18,211-218, 1998. 3. Langmaier, F., Kolomazník, K., Sukop, S. and Mládek, M.; ISLTC 83, 187-195, 1999. 4. Taylor, M. M., Cabeza, L. F., Marmer, W. N., Brown, E. M., and Kolomaznik, K.; JALCA 93, 40-50, 1998. 5. Kolomazník, K., Mládek, M., Langmaier, F. and Janácová, D.; JALCA 94, 55-63,1999. 6. Matsumura, S. and Toshima, K.; Hydrogels and Biodegradable Polymers for Bioapplications 627, 137-148, 1996. 7. Chiellini, E., Corti, A., D'Antone, S., and Solaro R.; Macromol. Symp. 144, 127-139, 1999. 8. Gartiser, S., Wallrabenstein, M., and Stiene, G.: 1. Environ. Polym. Degradation 6, 159-173,1998. 9. Fukae, R, Fujii, T., Takeo, M., Yamamoto, T., Sato, T., Maeda, Y. and Sangen, 0.; Polymer J. 26,1381-1386,1994. 10. Ayukawa, Y., Shiny a, S., Kakegawa, T. and Ito, M.: Pat. DS3625746, Tokyo, Japan, 1971. 11. Novamont S.p.A.; Pat. DS5462981, Milan, Italy, 1995. 12. Bastioli, c.; Macromol. Symp. 135, 193-204, 1998. 13. Griffin, Go J. L.; Particulate starch based products. Chemistry and technology of biodegradable polymers, Ed. by Griffin, Hapman & Hall, 1994, pp. 18-46. 14. Lim, S. w., Jung, I. K., Lee, K. H. and Jin, B. S.: Eur. Polym.l. 35, 1875-1881, 1999. 15. Alexy, P., Bakos, D., Kolomaznik, K., Javorekova, S., Podstranska, G., Krsiak, M. and Matej, M.; International Workshop on Environmentally Plastics, Smolenice, SR, 1999. 16. Sun, X. Z. S., Kim, H. R. and Mo, X. Q.; 1. Am. Oil Chem. Soc. 76, 117-123, 1999. 17. Park, S. K. and Hettiarachchy, N. S.; 1. Am. Oil Chem. Soc. 76, 1201-1205, 1999. 18. Zhang, J., Mungara, P. and Jane, J.; Polymer 42, 2569-2578,2001. 19. Huang, H. c., Chang, T. C. and Jane, J.; 1. Am. Oil Chem. Soc. 76, 1101-1108, 1999. 20. Otaigbe, J. D., Goel, H., Babcock, T. and Jane, J.; 1. Elastom. Plast. 31, 56-71,1999. 21. Salmoral, E. M., Gonzales, M. E., Mariscal, M. P. and Medina, L. F.; Ind. Crops Prod. 11,227-236,2000. 22. Salmoral, E. M., Gonzales, M. E., and Mariscal, M. P.; Ind. Crops Prod. 11, 217-225, 2000. 23. Shukla, Rand Cheryan, M.; Ind. Crops Prod. 13, 171-192, 2001. 24. di Gioia, L., Cuq, B. and Guilbert, S.; J. Mat. Res. 15, 2612-2619, 2000. 25. Park, H. J., and Chinnan, M. S.; J. Food Eng. 25, 497-507, 1995. 26. Saito, N., Okada, T. and copm.; J. of Bone and Joint Surgery - American Volume, 83A, 2001 27. Effenberger, G.; Fleischwirtschajt 75, No.3, 1995. 28. Zhao, W. Y., Kloczkowski, A., Mark, J. E., Erman, B. and Bahar, I.; J. Macromol. Sci.- Pure Appl. Chem. A33, 525-540, 1996. 29. Kenawy, E., Cinelli, P., Corti, A., Miertus, S. and Chiellini, E.; Macromol. Symp. 144,351-364, 1999. 30. Dalev, P .G., Patil, R D., Mark, J. E., Vassi1eva, E., and Fakirov, S.; J. Appl. Polym. Sci. 78, 1341-1347, 2000. 31. Cuq, B., Gontard, N. and Guilbert, S.: Polymer 38, 4071-4078, 1997. 32. Fossen, M., Ormel, I., van Vilsteren, G.E.T. and Jongsma, T. J.; Appl. Composite Mat. 7,433-437,2000. 33. Stein, T.M. and Greene, R.Y.; Starch-Starke 49, 245-249, 1997. 34. Crkonová, G., Alexy, P., Bakoš, D., Kolomazník, K., Šimková, B. and Precnerov<i, L.; Macromol. Symp. 170, 51-59, 2001. 35. ASTM D.521O-91: Standard Test Method for Determining the Anaerobic Biodegradation of Plastic Materials in the Presence of Municipal Sewage Sludge, 1991. 36. EN ISO 11734: Water quality-Evaluation of the ultimate anaerobic biodegradability of organic compounds in digested sludge-method by measurement of the biogas production, 1995. 37. Instruction manual Total organic carbon analyser model TOC-5000A. Shimadzu Corp. Japan, 1996. 38. Standard Methods for the Examination of Water and Wastewater. Ed. by Clesceri L.S., Greenberg A.E. and Trussell RR, APHA-AWWA-WPCF, 17th edition, 1989. 39. Shelton, D. R. and Tiedje, J. M.; Appl. Environ. Microbiol. 47,850-857, 1984.
utb.fulltext.sponsorship This work was carried out with the financial support of research objective of the MSMT of the Czech Republic, No. MSM 265200014.
Find Full text

Files in this item

Show simple item record