Publikace UTB
Repozitář publikační činnosti UTB

AI in supply chain: Techniques, applications, real-world cases and benefits under SCOR framework

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title AI in supply chain: Techniques, applications, real-world cases and benefits under SCOR framework en
dc.contributor.author Pham Hoang, Bao
dc.contributor.author Briš, Petr
dc.relation.ispartof Operations and Supply Chain Management-An International Journal
dc.identifier.issn 1979-3561 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2579-9363 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 18
utb.relation.issue 2
dc.citation.spage 300
dc.citation.epage 316
dc.type article
dc.language.iso en
dc.publisher OSCM Forum
dc.identifier.doi 10.31387/oscm0610474
dc.relation.uri https://www.journal.oscm-forum.org/publication/article/ai-in-supply-chain-techniques-applications-real-world-cases-and-benefits--under-scor-framework
dc.relation.uri https://journal.oscm-forum.org/journal/journal/download/20250715214955_oscm-2025-ai-supply-chain-scor-framework.pdf
dc.subject artificial intelligence (AI) en
dc.subject machine learning (ML) en
dc.subject supply chain management (SCM) en
dc.subject logistics en
dc.subject applications en
dc.subject use cases en
dc.subject industry examples, SCOR en
dc.description.abstract This article focuses on practical perspectives of Artificial Intelligence (AI) applications in Supply Chain Management by exploring commonly used AI techniques, use cases and benefits of applying AI in Supply Chain Management with real-world examples from multinational corporations like DHL, IBM, Walmart, Amazon, Google, among others. The findings are grouped according to the four stages of the SCOR (Supply Chain Operations Reference) framework, i.e plan, source, make, deliver, to facilitate visualization. We find that AI techniques including Neural Networks, Genetic Algorithms, Support Vector Machines, Reinforcement Learning, Fuzzy Logic, and Natural Language Processing are applied to enhance supply chain efficiencies, lower costs, increase profits, improve customer satisfaction, save operational time, reduce potential disruption, better suppliers/customers relationships, improve product quality, enhance safety, and shorten lead times... These stem from nine benefit groups, namely PLAN (demand forecasting, inventory optimization, supply risk mitigation), SOURCE (procurement, supplier selection), MAKE (product quality assurance, smart warehouse management, predictive maintenance), DELIVER (route optimization, dynamic pricing, and last mile delivery, and customer service). Limitations and future research directions are discussed. en
utb.faculty Faculty of Management and Economics
dc.identifier.uri http://hdl.handle.net/10563/1012611
utb.identifier.wok 001532780700002
utb.source J-wok
dc.date.accessioned 2025-12-09T08:16:48Z
dc.date.available 2025-12-09T08:16:48Z
dc.rights.access openAccess
utb.ou Department of Industrial Engineering and Information Systems
utb.contributor.internalauthor Pham Hoang, Bao
utb.contributor.internalauthor Briš, Petr
utb.fulltext.sponsorship The authors wish to thank the Internal grant agency FaME TBU No. IGA/FaME/2025/004 for its support
utb.wos.affiliation [Pham, Hoang Bao; Bris, Petr] Tomas Bata Univ Zlin, Fac Management & Econ, Dept Ind Engn & Informat Syst, Zlin, Czech Republic
utb.fulltext.projects IGA/FaME/2025/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam