Publikace UTB
Repozitář publikační činnosti UTB

Tin recovery and solidification of sludge from mirror grinding

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Tin recovery and solidification of sludge from mirror grinding en
dc.contributor.author Vachová, Barbora
dc.contributor.author Vinter, Štěpán
dc.contributor.author Bednařík, Vratislav
dc.contributor.author Kopová, Martina
dc.relation.ispartof Waste Forum
dc.identifier.issn 1804-0195 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.issue 3
dc.citation.spage 153
dc.citation.epage 160
dc.type article
dc.language.iso en
dc.publisher Czech Environment Management Center
dc.relation.uri https://www.tretiruka.cz/media-a-odpady/waste-forum/archiv/2022/waste-forum-1-2022/waste-forum-3-2022/
dc.relation.uri http://www.wasteforum.cz/cisla/WF_3_2022_p153.pdf
dc.subject recyklace cs
dc.subject cín cs
dc.subject solidifikace cs
dc.subject rentgenová fluorescence cs
dc.subject pevnost v tlaku cs
dc.subject aktivované uhlí cs
dc.subject tin recovery en
dc.subject solidification en
dc.subject sludge en
dc.subject mirror grinding en
dc.subject x-ray fluorescence en
dc.subject compressive strength en
dc.subject active carbon en
dc.description.abstract Tato studie se zaměřuje na získávání cínu a solidifikaci kalu ze zrcadlového broušení. K extrakci cínu z kalu se používají roztoky hydroxidů o různé koncentraci (0,1 – 10M). Kal je dále upravován technikou stabilizace a solidifikace s použitím běžného portlandského cementu jako pojiva. Vzorky byly hodnoceny pomocí rentgenové fluorescenční analýzy, vyluhovacích zkoušek a pevnosti v tlaku v případě solidifikovaných vzorků. Výsledky ukázaly, že v případě extrakce v 10M hydroxidu sodném bylo získáno téměř 57 % cínu jako sraženina. Optimální obsah pro solidifikaci kalu byl obsah 50 % cementu. Dále byl hodnocen vliv přídavku aktivního uhlí do solidifikačních směsí. Závěrem lze říct, že kal ze zrcadlového broušení se ukázal jako vhodný pro získávání cínu a solidifikovaný odpad lze považovat za odpad, který není nebezpečný. cs
dc.description.abstract This study aims on tin recovery and solidification of mirror-grinding sludge. To extract tin from sludge, different hydroxide solutions (0.1 - 10M) are used. The sludge is also treated using the stabilization and solidification technique using ordinary Portland cement as a binder. Samples were evaluated using x-ray fluorescence analysis, leaching tests and compressive strength in the case of solidified samples. The results showed that nearly 57 % of tin was recovered as a precipitate in case of extraction in 10M sodium hydroxide. The 50 % of ordinary Portland cement was the optimal content for the solidification of sludge. The influence of active carbon addition into solidification mixtures was also evaluated. In conclusion, the mirror-grinding sludge was suitable for tin recovery, and its solidification resulted in non-hazardous waste. © 2022 Czech Environment Management Center. All rights reserved. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011183
utb.identifier.obdid 43883975
utb.identifier.scopus 2-s2.0-85139754214
utb.source j-scopus
dc.date.accessioned 2022-10-26T13:40:46Z
dc.date.available 2022-10-26T13:40:46Z
dc.description.sponsorship Tomas Bata University in Zlin, TBU: IGA/FT/2022/006
dc.rights Attribution-NonCommercial 3.0 Czech Republic
dc.rights.uri https://creativecommons.org/licenses/by-nc/3.0/cz/
dc.rights.access openAccess
utb.ou Department of Environmental Protection Engineering
utb.contributor.internalauthor Vachová, Barbora
utb.contributor.internalauthor Vinter, Štěpán
utb.contributor.internalauthor Bednařík, Vratislav
utb.contributor.internalauthor Kopová, Martina
utb.fulltext.affiliation Barbora VACHOVÁ, Štěpán VINTER, Vratislav BEDNAŘÍK, Martina KOPOVÁ Department of Environmental Protection Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 5669, 760 01, Zlin, Czech Republic, e-mail: vinter@utb.cz , bednarik@utb.cz
utb.fulltext.dates -
utb.fulltext.references 1. ITA. Global Resources & Reserves. Int Tin Assoc., https://www.internationaltin.org/ 2. Zhou Y, Wu W, Qiu K. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Manag. 2010;30(11):2299 – 2304. doi:10.1016/j.wasman.2010.06.012 3. Park S, Kim S, Han Y, Park J. Apparatus for electronic component disassembly from printed circuit board assembly in e-wastes. Int J Miner Process. 2015;144:11 – 15. doi:10.1016/j.minpro.2015.09.013 4. Mecucci A, Scott K. Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards. J Chem Technol Biotechnol. 2002;77(4):449 – 457. doi:10.1002/jctb.575 5. Jha MK, Kumari A, Choubey PK, Lee JC, Kumar V, Jeong J. Leaching of lead from solder material of waste printed circuit boards (PCBs). Hydrometallurgy. 2012;121 – 124:28 – 34. doi:10.1016/j.hydromet.2012.04.010 6. Wang Y, Liu B, Sun H, Huang Y, Han G. Selective extraction and recovery of tin from hazardous zinc-leaching residue by oxalic acid/sulfuric acid mixture leaching and hydrolytic precipitation. J Clean Prod. 2022;342(January):130955. doi:10.1016/j.jclepro.2022.130955 7. Yoshida H, Izhar S, Nishio E, Utsumi Y, Kakimori N, Feridoun SA. Application of sub-critical water for recovery of tin and glass substrates from LCD panel E-waste. Detritus. 2018;4(December):98 – 103. doi:10.31025/2611-4135/2018.13738 8. Li Y, Liu Z, Li Q, Liu Z, Zeng L. Recovery of indium from used indium-tin oxide (ITO) targets. Hydrometallurgy. 2011;105(3 – 4):207 – 212. doi:10.1016/j.hydromet.2010.09.006 9. Erdem M, Özverdi A. Environmental risk assessment and stabilization/solidification of zinc extraction residue: II. Stabilization/solidification. Hydrometallurgy. 2011;105(3 – 4):270 – 276. doi:10.1016/J.HYDROMET.2010.10.014 10. Sukandar, Padmi T, Tanaka M, Aoyama I. Chemical stabilization of medical waste fly ash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation. Waste Manag. 2009;29(7):2065 – 2070. doi:10.1016/j.wasman.2009.03.005 11. Jung CH, Matsuto T, Tanaka N, Okada T. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag. 2004;24(4):381 – 391. doi:10.1016/S0956-053X(03)00137-5 12. Kazmi SMS, Abbas S, Nehdi ML, Saleem MA, Munir MJ. Feasibility of Using Waste Glass Sludge in Production of Ecofriendly Clay Bricks. J Mater Civ Eng. 2017;29(8):04017056. doi:10.1061/(asce)mt.1943-5533.0001928 13. Nandi VS, Raupp-Pereira F, Montedo ORK, Oliveira APN. The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. J Clean Prod. 2015;86:461 – 470. doi:10.1016/j.jclepro.2014.08.091 14. Cao X, Wahbi A, Ma L, Li B, Yang Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater. 2009;164(2 – 3):555 – 564. doi:10.1016/j.jhazmat.2008.08.034 15. Song YC, Sivakumar S, Nguyen TT, Kim SH, Kim BG. The immobilization of heavy metals in biosolids using phosphate amendments-Comparison of EPA (6010 and 3051) and selective sequential extraction methods. J Hazard Mater. 2009;167(1 – 3):1033 – 1037. doi:10.1016/j.jhazmat.2009.01.089 16. Çoruh S, Ergun ON. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J Hazard Mater. 2010;173(1 – 3):468 – 473. doi:10.1016/j.jhazmat.2009.08.108 17. Lin SL, Cross WH, Chian ESK, Lai JS, Giabbai M, Hung CH. Stabilization and solidification of lead in contaminated soils. J Hazard Mater. 1996;48(1 – 3):95 – 110. doi:10.1016/0304-3894(95)00143-3 18. Gollmann MAC, da Silva MM, Masuero AB, dos Santos JHZ. Stabilization and solidification of Pb in cement matrices. J Hazard Mater. 2010;179(1 – 3):507 – 514. doi:10.1016/j.jhazmat.2010.03.032 19. Rha CY, Kang SK, Kim CE. Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions. J Hazard Mater. 2000;73(3): 255 – 267. 20. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for tin. 21. EN 15935:2001. Soil, waste, treated biowaste and sludge - Determination of loss of ignition. Brussel: European Committee for Standardization, 2021. 22. EN 196-1. Methods of testing cement - Part 1: Determination of strength. 23. EN 197-1:2011. Cement - Part 1: Composition, specifications and conformity criteria for common cements. 24. Yousuf M, Mollah A, Hess TR, Tsai YN, Cocke DL. An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cem Concr Res. 1993;23(4):773 – 784. doi:10.1016/0008-8846(93)90031-4 25. Zhang H, Wang B, Dong X, Feng L, Fan Z. Leachability of heavy metals from solidified sludge. Sci China, Ser E Technol Sci. 2009;52(7):1906 – 1912. doi:10.1007/s11431-009-0124-2 26. Zákon č. 541/2020 Sb., o odpadech, v platném zněni [Czechia, Act No. 541/2020 Coll., on waste, as amended] 27. Vyhláška č. 273/2021 Sb., o podrobnostech nakládání s odpady, v platném znění [Czechia, Proclamation No. 273/2021 Coll., Proclamation on details of waste management, as amended]
utb.fulltext.sponsorship This research was supported by an internal grant from Tomas Bata University in Zlin, no. IGA/FT/2022/006
utb.scopus.affiliation Department of Environmental Protection Engineering, Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 5669, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/FT/2022/006
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Department of Environmental Protection Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial 3.0 Czech Republic Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial 3.0 Czech Republic