TBU Publications
Repository of TBU Publications

The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation

DSpace Repository

Show simple item record

dc.title The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation en
dc.contributor.author Maňas, David
dc.contributor.author Mizera, Aleš
dc.contributor.author Navrátil, Milan
dc.contributor.author Maňas, Miroslav
dc.contributor.author Ovsík, Martin
dc.contributor.author Sehnálek, Stanislav
dc.contributor.author Stoklásek, Pavel
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 10
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym10101057
dc.relation.uri https://www.mdpi.com/2073-4360/10/10/1057
dc.subject thermoplastic polyester elastomer en
dc.subject irradiation en
dc.subject radiation cross-linking en
dc.subject electrical and mechanical properties en
dc.description.abstract The main advantages of Thermoplastic Polyester Elastomers (TPE-E) are their elastomer properties as well as their ability to be processed in the same way as thermoplastic polymers (e.g., injection moulding, compression moulding and extrusion). However, TPE-Es' properties, mainly their mechanical properties and thermal characteristics, are not as good as those of elastomers. Because of this TPE-Es are often modified with the aim of improving their properties and extending their range of application. Radiation cross-linking using accelerated electron beams is one of the most effective ways to change virgin polymers' properties significantly. Their electrical (that is to say permittivity and resistivity measurements), mechanical (that is, tensile and impact tensile tests), as well as surface (that is, nano-indentation) properties were measured on modified/cross-linked TPE-E specimens with and/or without a cross-linking agent at irradiation doses of 0, 33, 66, 99, 132, 165 and 198 kGy. The data acquired from these procedures show significant changes in the measured properties. The results of this study allow the possibility of determining the proper processing parameters and irradiation doses for the production of TPE-E products which leads to the enlargement of their application in practice. © 2018 by the authors. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008222
utb.identifier.obdid 43878799
utb.identifier.scopus 2-s2.0-85053826004
utb.identifier.wok 000448662400012
utb.source j-scopus
dc.date.accessioned 2018-10-18T10:31:45Z
dc.date.available 2018-10-18T10:31:45Z
dc.description.sponsorship European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.contributor.internalauthor Maňas, David
utb.contributor.internalauthor Mizera, Aleš
utb.contributor.internalauthor Navrátil, Milan
utb.contributor.internalauthor Maňas, Miroslav
utb.contributor.internalauthor Ovsík, Martin
utb.contributor.internalauthor Sehnálek, Stanislav
utb.contributor.internalauthor Stoklásek, Pavel
utb.fulltext.affiliation David Manas 1,2,†, Ales Mizera 1,* https://orcid.org/0000-0001-9681-1008 , Milan Navratil 1 , Miroslav Manas 1 , Martin Ovsik 2 https://orcid.org/0000-0002-1932-2814 , Stanislav Sehnalek 1 https://orcid.org/0000-0002-3068-0014 and Pavel Stoklasek 1 1 Faculty of Applied Informatics, Tomas Bata University in Zlin, CEBIA-Tech, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; manas@utb.cz (D.M.); navratil@utb.cz (M.N.); manas@fai.utb.cz (M.M.); sehnalek@fai.utb.cz (S.S.); pstoklasek@utb.cz (P.S.) 2 Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic; ovsik@utb.cz * Correspondence: mizera@utb.cz; Tel.: +420-576-035-636 † This article is dedicated, in memoriam, to David Manas.
utb.fulltext.dates Received: 3 August 2018; Accepted: 20 September 2018; Published: 22 September 2018
utb.fulltext.references 1. Kricheldorf, H. Thermoplastic Elastomers; Hanser Gardner Publications: Cincinnati, OH, USA, 2004. 2. Spontak, R.J.; Patel, N.P. Thermoplastic elastomers: fundamentals and applications. Curr. Opin. Colloid Interface Sci. 2000, 5, 333–340. [CrossRef] 3. Drobny, J. Handbook of Thermoplastic Elastomers; William Andrew Publisher: Norwich, NY, USA, 2014. 4. Nagai, Y.; Ogawa, T.; Zhen, L.Y.; Nishimoto, Y.; Ohishi, F. Analysis of weathering of thermoplastic polyester elastomers—I. Polyether-polyester elastomers. Polym. Degrad. Stab. 1997, 56, 115–121. [CrossRef] 5. Nagai, Y.; Ogawa, T.; Nishimoto, Y.; Ohishi, F. Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer. Polym. Degrad. Stab. 1999, 65, 217–224. [CrossRef] 6. Kalfoglou, N.K. Thermomechanical studies of semicrystalline polyether–ester copolymers. Effect of thermal, mechanical, and solvent treatment. J. Appl. Polym. Sci. 1977, 21, 543–554. [CrossRef] 7. Hussain, M.; Ko, Y.H.; Choa, Y.H. Significant enhancement of mechanical and thermal properties of thermoplastic polyester elastomer by polymer blending and nanoinclusion. J. Nanomater. 2016, 2016, 69. [CrossRef] 8. Varsavas, S.D.; Kaynak, C. Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide. Compos. Commun. 2018, 8, 24–30, doi:10.1016/j.coco.2018.03.003. [CrossRef] 9. Chen, J.; Lv, Q.; Wu, D.; Yao, X.; Wang, J.; Li, Z. Nucleation of a Thermoplastic Polyester Elastomer Controlled by Silica Nanoparticles. Ind. Eng. Chem. Res. 2016, 55, 5279–5286. [CrossRef] 10. Sreekanth, M.; Joseph, S.; Mhaske, S.; Mahanwar, P.; Bambole, V. Effects of Mica and Fly Ash Concentration on the Properties of Polyester Thermoplastic Elastomer Composites. J. Thermoplast. Compos. Mater. 2011, 24, 317–331. [CrossRef] 11. Helal, E.; David, E.; Fréchette, M.; Demarquette, N.R. Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: Correlation between rheological, thermal, electrical and dielectric properties. Eur. Polym. J. 2017, 94, 68–86. [CrossRef] 12. Ju, S.; Zhang, H.; Chen, M.; Zhang, C.; Chen, X.; Zhang, Z. Improved electrical insulating properties of LDPE based nanocomposite: Effect of surface modification of magnesia nanoparticles. Compos. Part A Appl. Sci. Manuf. 2014, 66, 183–192. [CrossRef] 13. Qiu, Y.; Wang, J.; Wu, D.; Wang, Z.; Zhang, M.; Yao, Y.; Wei, N. Thermoplastic polyester elastomer nanocomposites filled with graphene: Mechanical and viscoelastic properties. Compos. Sci. Technol. 2016, 132, 108–115. [CrossRef] 14. Qiu, Y.; Wu, D.; Xie, W.; Wang, Z.; Peng, S. Thermoplastic polyester elastomer composites containing two types of filler particles with different dimensions: Structure design and mechanical property control. Compos. Struct. 2018, 197, 21–27. [CrossRef] 15. Helal, E.; Demarquette, N.; Amurin, L.; David, E.; Carastan, D.; Fréchette, M. Styrenic block copolymer-based nanocomposites: Implications of nanostructuration and nanofiller tailored dispersion on the dielectric properties. Polymer 2015, 64, 139–152. [CrossRef] 16. Radhakrishnan, S.; Saini, D.R. Electrical properties of polyester elastomer composites containing metallic fillers. J. Mater. Sci. 1991, 26, 5950–5956. [CrossRef] 17. Bae, J.; Lee, S.; Kim, B.C.; Cho, H.H.; Chae, D.W. Polyester-based thermoplastic elastomer/MWNT composites: Rheological, thermal, and electrical properties. Fibers Polym. 2013, 14, 729–735. [CrossRef] 18. Drobny, J. Ionizing Radiation and Polymers: Principles, Technology and Applications; William Andrew Elsevier Health Sciences Distributor: Norwich, UK, 2013. 19. Rouif, S. Radiation cross-linked polymers: Recent developments and new applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2005, 236, 68–72. [CrossRef] 20. Ghazali, Z.; Johnson, A.; Dahlan, K. Radiation crosslinked thermoplastics natural rubber (TPNR) foams. Radiat. Phys. Chem. 1999, 55, 73–79. [CrossRef] 21. Šarac, T.; Quiévy, N.; Gusarov, A.; Konstantinović, M. Influence of gamma-irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat. Phys. Chem. 2016, 125, 151–155. [CrossRef] 22. Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A. Study of thermal aging effects on the conduction and trapping of charges in XLPE cable insulations under electron beam irradiation. Radiat. Phys. Chem. 2018, 149, 110–117. [CrossRef] 23. Lee, J.M.; Choi, B.H.; Moon, J.S.; Lee, E.S. Determination of the tear properties of thermoplastic polyester elastomers (TPEEs) using essential work of fracture (EWF) test method. Polym. Test. 2009, 28, 854–865. [CrossRef] 24. Jamaluddin, N.; Razaina, M.; Ishak, Z.M. Mechanical and Morphology Behaviours of Polybutylene (succinate)/Thermoplastic Polyurethaneblend. Procedia Chem. 2016, 19, 426–432. [CrossRef] 25. Huang, J.; Wang, J.; Qiu, Y.; Wu, D. Mechanical properties of thermoplastic polyester elastomer controlled by blending with poly(butylene terephthalate). Polym. Test. 2016, 55, 152–159. [CrossRef] 26. Huang, J.; Qiu, Y.; Wu, D.; Wang, J. New Way To Tailor Thermal Stability and Mechanical Properties of Thermoplastic Polyester Elastomer: Relations between Interfacial Structure and Surface Treatment of Spodumene Slag. Ind. Eng. Chem. Res. 2017, 56, 6239–6246. [CrossRef] 27. Manas, D.; Mizera, A.; Manas, M.; Ovsik, M.; Hylova, L.; Sehnalek, S.; Stoklasek, P. Mechanical Properties Changes of Irradiated Thermoplastic Elastomer. Polymers 2018, 10, 87. [CrossRef] 28. International Organization for Standardization. Plastics–Determination of Tensile Properties; International Organization for Standardization: Geneva, Switzerland, 2012. 29. International Organization for Standardization. Practice for Calibration of Routine Dosimetry Systems for Radiation Processing; International Organization for Standardization: Geneva, Switzerland, 2013. 30. Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics; ASTM International Standard; ASTM International: West Conshohocken, PA, USA, 2016. 31. Standard Test Methods for DC Resistance or Conductance of Insulating Materials; ASTM International Standard; ASTM International: West Conshohocken, PA, USA, 2014. 32. International Organization for Standardization. Dielectric and Resistive Properties of Solid Insulating Materials—Part 3-1: Determination of Resistive Properties (DC methods)—Volume Resistance and Volume Resistivity—General Method; International Organization for Standardization: Geneva, Switzerland, 2016. 33. International Organization for Standardization. Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties; International Organization for Standardization: Geneva, Switzerland, 2017. 34. International Organization for Standardization. Plastics—Determination of Tensile-Impact Strength; International Organization for Standardization: Geneva, Switzerland, 2004. 35. International Organization for Standardization. Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method; International Organization for Standardization: Geneva, Switzerland, 2015. 36. Manas, M.; Manas, D.; Stanek, M.; Mizera, A.; Ovsik, M. Modification of polymer properties by irradiation properties of thermoplastic electromer after radiation cross-linking. Asian J. Chem. 2013, 25, 5124–5128.
utb.fulltext.sponsorship Our great thanks belong to our colleague and co-worker, David Manas, for his long lasting cooperation and supervision of numerous academic diploma works and theses. David was a promising—and highly regarded pedagogue and scientist; and a leading person in the research area presented in this article. He passed away unexpectedly in mid-September 2017, at the age of only 42. We were honoured to work with him. May his soul rest in peace. The authors of this article would especially like to thank the firm—BGS, Germany, and Michal Danek especially, for their kind assistance in the realisation of radial cross-linking. This work was supported by the European Regional Development Fund under the project CEBIA-Tech Instrumentation No. CZ.1.05/2.1.00/19.0376 and by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014).
utb.wos.affiliation [Manas, David; Mizera, Ales; Navratil, Milan; Manas, Miroslav; Sehnalek, Stanislav; Stoklasek, Pavel] Tomas Bata Univ Zlin, Fac Appl Informat, CEBIA Tech, Stranemi 4511, Zlin 76005, Czech Republic; [Manas, David; Ovsik, Martin] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, CEBIA-Tech, Nad Stranemi 4511, Zlin, 760 05, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, 760 01, Czech Republic
utb.fulltext.projects CZ.1.05/2.1.00/19.0376
utb.fulltext.projects LO1303 (MSMT-7778/2014)
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International