TBU Publications
Repository of TBU Publications

Synthesis of bis(1,2,3-triazole) functionalized quinoline-2,4-diones

DSpace Repository

Show simple item record


dc.title Synthesis of bis(1,2,3-triazole) functionalized quinoline-2,4-diones en
dc.contributor.author Milićević, David
dc.contributor.author Kimmel, Roman
dc.contributor.author Gazvoda, Martin
dc.contributor.author Urankar, Damijana
dc.contributor.author Kafka, Stanislav
dc.contributor.author Košmrlj, Janez
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 23
utb.relation.issue 9
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/molecules23092310
dc.relation.uri http://www.mdpi.com/1420-3049/23/9/2310
dc.subject click chemistry en
dc.subject azido group en
dc.subject quinoline-2,4(1H,3H)-diones en
dc.subject propargyl group en
dc.subject bis(1,2,3-triazole) en
dc.description.abstract Derivatives of 3-(1H-1,2,3-triazol-1-yl)quinoline-2,4(1H,3H)-dione unsubstituted on quinolone nitrogen atom, which are available by the previously described four step synthesis starting from aniline, were exploited as intermediates in obtaining the title compounds. The procedure involves the introduction of propargyl group onto the quinolone nitrogen atom of mentioned intermediates by the reaction of them with propargyl bromide in N,N-dimethylformamide (DMF) in presence of a potassium carbonate and the subsequent formation of a second triazole ring by copper catalyzed cyclisation reaction with azido compounds. The products were characterized by 1H, 13C and 15N NMR spectroscopy. The corresponding resonances were assigned on the basis of the standard 1D and gradient selected 2D NMR experiments (1H–1H gs-COSY, 1H–13C gs-HSQC, 1H–13C gs-HMBC) with 1H–15N gs-HMBC as a practical tool to determine 15N NMR chemical shifts at the natural abundance level of 15N isotope. © 2018 b the authors. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008196
utb.identifier.obdid 43879067
utb.identifier.scopus 2-s2.0-85053040214
utb.identifier.wok 000447365100221
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2018-10-03T11:13:01Z
dc.date.available 2018-10-03T11:13:01Z
dc.description.sponsorship Slovenian Research Agency [P1-0230, J1-8147, J1-9166]; [IGA/FT/2018/007]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Milićević, David
utb.contributor.internalauthor Kimmel, Roman
utb.contributor.internalauthor Kafka, Stanislav
utb.fulltext.affiliation David Milićević 1, Roman Kimmel 1, Martin Gazvoda 2, Damijana Urankar 2, Stanislav Kafka 1,* and Janez Košmrlj 2,* 1 Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; david.milicevic@gmail.com (D.M.); r.kimmel@centrum.cz (R.K.) 2 Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; martin.gazvoda@fkkt.uni-lj.si (M.G.); damijana.urankar@fkkt.uni-lj.si (D.U.) * Correspondence: kafka@utb.cz (S.K.); janez.kosmrlj@fkkt.uni-lj.si (J.K.); Tel.: +420-57-603-1115 (S.K.); +386-1-479-8558 (J.K.) † Dedicated to Professor Oldřich Paleta on his 80th birthday.
utb.fulltext.dates Received: 25 June 2018 Accepted: 4 September 2018 Published: 10 September 2018
utb.fulltext.references 1. Košmrlj, J. (Ed.) Click Triazoles, Topics in Heterocyclic Chemistry, 1st ed.; Springer: Berlin, Germany, 2012; Volume 28, ISBN 978-3-642-29429-7. 2. Crowley, J.D.; McMorran, D.A. ‘Click-Triazole’ coordination chemistry: Exploiting 1,4-disubstituted 1,2,3-Triazoles as ligands. In Topics in Heterocyclic Chemistry, 1st ed.; Košmrlj, J., Ed.; Springer: Berlin, Germany, 2012; Volume 28, pp. 31–83. 3. Schweinfurth, D.; Deibel, N.;Weisser, F.; Sarkar, B. Getting new ligands with a click. Nachr. Chem. 2011, 59, 937–941. [CrossRef] 4. Lee, S.; Flood, A.H. Binding Anions in Rigid and Reconfigurable Triazole Receptors. In Topics in Heterocyclic Chemistry, 1st ed.; Košmrlj, J., Ed.; Springer: Berlin, Germany, 2012; Volume 28, pp. 85–108. 5. Watkinson, M. Click Triazoles as Chemosensors. In Topics in Heterocyclic Chemistry, 1st ed.; Košmrlj, J., Ed.; Springer: Berlin, Germany, 2012; Volume 28, pp. 109–136. 6. Schweinfurth, D.; Hettmanczyk, L.; Suntrup, L.; Sarkar, B. Metal complexes of click-derived triazoles and mesoionic carbenes: Electron transfer, photochemistry, magnetic bistability, and catalysis. Z. Anorg. Allg. Chem. 2017, 643, 554–584. [CrossRef] 7. Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1-3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [CrossRef] [PubMed] 8. Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. 2002, 114, 2708–2711. [CrossRef] 9. Kafka, S.; Hauke, S.; Salcinovic, A.; Soidinsalo, O.; Urankar, D.; Kosmrlj, J. Copper(I)-Catalyzed [3 + 2] Cycloaddition of 3-Azidoquinoline-2,4(1H,3H)-diones with Terminal Alkynes. Molecules 2011, 16, 4070–4081. [CrossRef] 10. Proisl, K.; Kafka, S.; Košmrlj, J. Chemistry and Applications of 4-Hydroxyquinolin-2-one and Quinoline-2,4-dionebased Compounds. Curr. Org. Chem. 2017, 21, 1949–1975. [CrossRef] 11. Bolje, A.; Urankar, D.; Košmrlj, J. Synthesis and NMR Analysis of 1,4-Disubstituted 1,2,3-Triazoles Tethered to Pyridine, Pyrimidine, and Pyrazine Rings. Eur. J. Org. Chem. 2014, 8167–8181. [CrossRef] 12. Bolje, A.; Košmrlj, J. A Selective Approach to Pyridine Appended 1,2,3-Triazolium Salts. Org. Lett. 2013, 15, 5084–5087. [CrossRef] [PubMed] 13. Perczel, A.; Atanasov, A.G.; Sklenář, V.; Nováček, J.; Papoušková, V.; Kadeřávek, P.; Žídek, L.; Kozłowski, H.; Watły, J.; Hecel, A.; et al. The Eighth Central European Conference “Chemistry towards Biology”: Snapshot. Molecules 2016, 21, 1381. [CrossRef] [PubMed] 14. Kafka, S.; Proisl, K.; Kašpárková, V.; Urankar, D.; Kimmel, R.; Košmrlj, J. Oxidative ring opening of 3-hydroxyquinoline-2,4(1H,3H)-diones into N-( -ketoacyl)anthranilic acids. Tetrahedron 2013, 69, 10826–10835. [CrossRef] 15. Stadlbauer, W.; Laschober, R.; Lutschounig, H.; Schindler, G.; Kappe, T. Halogenation reactions in position 3 of quinoline-2,4-dione systems by electrophilic substitution and halogen exchange. Monatsh. Chem. 1992, 123, 617–636. [CrossRef] 16. Kafka, S.; Klásek, A.; Polis, J.; Košmrlj, J. Syntheses of 3-Aminoquinoline-2,4(1H,3H)-diones. Heterocycles 2002, 57, 1659–1682. [CrossRef] 17. Meldal, M.; Tornøe, C.W. Cu-Catalyzed Azide–Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [CrossRef] [PubMed] 18. Buckley, B.R.; Heaney, H. Mechanistic Investigations of Copper(I)-Catalysed Alkyne–Azide Cycloaddition Reactions. In Topics in Heterocyclic Chemistry, 1st ed.; Košmrlj, J., Ed.; Springer: Berlin, Germany, 2012; Volume 28, pp. 1–30. 19. Kimmel, R.; Kafka, S.; Košmrlj, J. Selective formation of glycosidic linkages of N-unsubstituted 4-hydroxyquinolin-2-(1H)-ones. Carbohydr. Res. 2010, 345, 768–779. [CrossRef] [PubMed] 20. Urankar, D.; Košmrlj, J. Concise and Diversity-Oriented Synthesis of Ligand Arm-Functionalized Azoamides. J. Comb. Chem. 2008, 10, 981–985. [CrossRef] [PubMed] 21. Iha, R.K.; Wooley, K.L.; Nyström, A.M.; Burke, D.J.; Kade, M.J.; Hawker, C.J. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials. Chem. Rev. 2009, 109, 5620–5686. [CrossRef] [PubMed] 22. Urankar, D.; Pinter, B.; Pevec, A.; De Proft, F.; Turel, I.; Košmrlj, J. Click-Triazole N2 Coordination to Transition-Metal Ions Is Assisted by a Pendant Pyridine Substituent. Inorg. Chem. 2010, 49, 4820–4829. [CrossRef] [PubMed] 23. Sá, M.M.; Ramos, M.D.; Fernandes, L. Fast and efficient preparation of Baylis–Hillman-derived (E)-allylic azides and related compounds in aqueous medium. Tetrahedron 2006, 62, 11652–11656. [CrossRef] 24. Boyer, J.H.; McCane, D.I.; McCarville,W.J.; Tweedie, A.T. Pyrido-2,3-furoxane. J. Am. Chem. Soc. 1953, 75, 5298–5300. [CrossRef]
utb.fulltext.sponsorship The authors acknowledge the financial support from (internal grants No. IGA/FT/2018/007, funded from the resources of specific university research) and the Slovenian Research Agency (Research Core Funding Grant P1-0230, Project J1-8147, and Project J1-9166).
utb.wos.affiliation [Milicevic, David; Kimmel, Roman; Kafka, Stanislav] Tomas Bata Univ Zlin, Fac Technol, Dept Chem, Zlin 76001, Czech Republic; [Gazvoda, Martin; Urankar, Damijana; Kosmrlj, Janez] Univ Ljubljana, Fac Chem & Chem Technol, SI-1000 Ljubljana, Slovenia
utb.scopus.affiliation Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, SI-1000, Slovenia
utb.fulltext.projects IGA/FT/2018/007
utb.fulltext.projects P1-0230
utb.fulltext.projects J1-8147
utb.fulltext.projects J1-9166
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International