TBU Publications
Repository of TBU Publications

Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers

DSpace Repository

Show simple item record

dc.title Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers en
dc.contributor.author Shehata, Nader
dc.contributor.author Kandas, Ishac
dc.contributor.author Hassounah, Ibrahim
dc.contributor.author Sobolčiak, Patrik
dc.contributor.author Krupa, Igor
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Popelka, Anton
dc.contributor.author Steadman, Jesse
dc.contributor.author Lewis, Randolph
dc.relation.ispartof Nanomaterials
dc.identifier.issn 2079-4991 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 8
utb.relation.issue 8
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/nano8080585
dc.relation.uri http://www.mdpi.com/2079-4991/8/8/585
dc.subject spider silk en
dc.subject sensor en
dc.subject mechanical vibrations en
dc.subject humidity en
dc.subject piezoelectric en
dc.subject nanofibers en
dc.description.abstract This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level humidity, beyond a relative humidity of 70%. The mechanical characterizations of the nanofibers show promising results, with Young’s modulus and maximum strain of up to 4.32 MPa and 40.90%, respectively. One more interesting feature is the electric resistivity of the spider silk nanofibers, which were observed to be decaying with humidity over time, showing a cyclic effect in both the absence and presence of humidity due to the cyclic shrinkage/expansion of the protein chains. The synthesized nanocomposite can be useful for further biomedical applications, such as nerve cell regrowth and drug delivery. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008149
utb.identifier.obdid 43879687
utb.identifier.scopus 2-s2.0-85051280270
utb.identifier.wok 000443257500024
utb.identifier.pubmed 30071581
utb.source j-scopus
dc.date.accessioned 2018-08-29T08:26:56Z
dc.date.available 2018-08-29T08:26:56Z
dc.description.sponsorship NPRP from the Qatar National Research Fund (Qatar Foundation) [NPRP 7-1724-3-438]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mrlík, Miroslav
utb.fulltext.affiliation Nader Shehata 1,2,3,4,* https://orcid.org/0000-0002-2913-4825 , Ishac Kandas 1,2,4, Ibrahim Hassounah 3, Patrik Sobolčiak 5 https://orcid.org/0000-0002-4009-633X , Igor Krupa 5, Miroslav Mrlik 6 https://orcid.org/0000-0001-6203-6795 , Anton Popelka 5, Jesse Steadman 3 and Randolph Lewis 3 1 Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; ishac@vt.edu 2 Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt 3 USTAR Bioinnovations Center, Utah State University, Logan, UT 84341, USA; ibrahim.hassounah@gmail.com (I.H.); jessesteadman98@gmail.com (J.S.); randy.lewis@usu.edu (R.L.) 4 Physics Department, Kuwait College of Science and Technology (KCST), Doha District 13133, Kuwait 5 Center of Advanced Materials, Qatar University, Doha 2713, Qatar; patrik@qu.edu.qa (P.S.); igor.krupa@qu.edu.qa (I.K.); anton.popelka@qu.edu.qa (A.P.) 6 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin 76001, Czech Republic; mrlik@utb.cz * Correspondence: nader83@vt.edu; Tel.: +965-6501-9574
utb.fulltext.dates Received: 1 July 2018 Accepted: 17 July 2018 Published: 1 August 2018
utb.fulltext.references 1. Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548. [CrossRef] [PubMed] 2. Bourzac, K. Spiders: Web of intrigue. Nature 2015, 519, S4–S6. [CrossRef] [PubMed] 3. Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials. Rev. Prog. Polym. Sci. 2011, 36, 1254–1276. [CrossRef] 4. Lucas, F. Spiders and their silk. Discovery 1964, 25, 20–26. Vollrath, F. Spider webs and silks. Sci. Am. 1992, 266, 70–76. [CrossRef] 5. Zhou, L.; Fu, P.; Cai, X.; Zhou, S.; Yuan, Y. Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Appl. Catal. B Environ. 2016, 188, 31–38. [CrossRef] 6. Yu, Q.; Xu, S.; Zhang, H.; Gu, L.; Xu, Y.; Ko, F. Structure–property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning. J. Biomed. Mater. Res. 2014, 102, 3828–3837. [CrossRef] [PubMed] 7. Steins, A.; Dik, P.; Müller, W.H.; Vervoort, S.J.; Reimers, K.; Kuhbier, J.W.; Vogt, P.M.; van Apeldoorn, A.A.; 8. Coffer, P.J.; Schepers, K. In vitro evaluation of spider silk meshes as a potential biomaterial for bladder reconstruction. PLoS ONE 2015, 10, 0145240. [CrossRef] [PubMed] 9. Stauffer, S.; Cougill, S.; Lewis, R.V. Mechanical properties of several spider silks. J. Arachnol. 1994, 22, 5–11. 10. Copeland, C.; Bell, B.; Christensen, C.; Lewis, R. About development of a process for the spinning of synthetic spider silk. ACS Biomater. Sci. Eng. 2015, 1, 577–584. [CrossRef] [PubMed] 11. Munro, R.; Putzeys, T.; Copeland, C.; Xing, C.; Lewis, R.; Ban, H.; Glorieux, C.; Wubbenhorst, M. Investigation of Synthetic Spider Silk Crystallinity and Alignment via Electrothermal, Pyroelectric, Literature XRD, and Tensile Techniques. Macromol. Mater. Eng. 2017, 302, 1600480. [CrossRef] [PubMed] 12. Hinman, M.B.; Lewis, R.V. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 1992, 267, 19320–19324. [PubMed] 13. Colgin, M.; Lewis, R.V. Spider Minor Ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “Spacer Regions”. Protein Sci. 1998, 7, 667–672. [CrossRef] [PubMed] 14. Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature 2003, 424, 1057–1061. [CrossRef] [PubMed] 15. Keten, S.; Xu, Z.; Ihle, B.; Buehler, M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367. [CrossRef] [PubMed] 16. Porter, D.; Vollrath, F.; Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 2005, 16, 199–206. [CrossRef] [PubMed] 17. Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. [CrossRef] 18. Ando, Y.; Okano, R.; Nishida, K.; Miyata, S.; Fukada, E. Piezoelectric and related properties of hydrated silk fibroin. Rep. Prog. Polym. Phys. Jpn. 1980, 23, 775. 19. Jucel, T.; Cebe, P.; Caplan, D.L. Structural Origins of silk piezoelectricity. Adv. Func. Mater. 2011, 21, 779–785. 20. Staworko, M.; Uhl, T. Modeling and Simulation of Piezoelectric Elements-Comparison of Avaialable Methods and Tools Summary. Mechanics 2008, 27, 161–171. 21. Huang, L.; Bui, N.-N.; Manickam, S.S.; McCutcheon, J.R. Controlling Electrospun Nanofiber Morphology and Mechanical Properties Using Humidity. Polym. Phys. 2011, 49, 1734–1744. [CrossRef]
utb.fulltext.sponsorship This research was funded by NPRP from the Qatar National Research Fund (A Member of the Qatar Foundation). Grant number is [NPRP 7-1724-3-438].
utb.wos.affiliation [Shehata, Nader; Kandas, Ishac] Alexandria Univ, Dept Engn Math & Phys, Fac Engn, Alexandria 21544, Egypt; [Shehata, Nader; Kandas, Ishac] Alexandria Univ, CSNP, SmartCI Res Ctr, Alexandria 21544, Egypt; [Shehata, Nader; Hassounah, Ibrahim; Steadman, Jesse; Lewis, Randolph] Utah State Univ, USTAR Bioinnovat Ctr, Logan, UT 84341 USA; [Shehata, Nader; Kandas, Ishac] Kuwait Coll Sci & Technol, Dept Phys, Doha Dist 13133, Kuwait; [Sobolciak, Patrik; Krupa, Igor; Popelka, Anton] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar; [Mrlik, Miroslav] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, Egypt; Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria, Egypt; USTAR Bioinnovations Center, Utah State University, Logan, UT, United States; Physics Department, Kuwait College of Science and Technology (KCST), Doha District 13133, Kuwait; Center of Advanced Materials, Qatar University, Doha, Qatar; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects NPRP 7-1724-3-438
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International