TBU Publications
Repository of TBU Publications

Influence of clay nanofillers on properties of ethylene-octene copolymers

DSpace Repository

Show simple item record


dc.title Influence of clay nanofillers on properties of ethylene-octene copolymers en
dc.contributor.author Tesaříková, Alice
dc.contributor.author Měřínská, Dagmar
dc.contributor.author Kalous, Jiří
dc.contributor.author Svoboda (FT), Petr
dc.relation.ispartof Polymer Composites
dc.identifier.issn 0272-8397 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
dc.type article
dc.language.iso en
dc.publisher John Wiley and Sons Inc.
dc.identifier.doi 10.1002/pc.24568
dc.relation.uri https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.24568
dc.description.abstract The article deals with preparation, properties and usage of ethylene-octene copolymers/clay films. Different properties of two types of ethylene-octene copolymers (Engage 8540 and Engage 8842) with 17 and 45 wt% of octene (EOC-17 and EOC-45) were compared in nanocomposites with two types of clays-Cloisite 93A and Dellite 67. The aim was to evaluate the influence of (nano)filler type on ethylene-octene nanocomposites properties. Mechanical and thermal properties, morphology, and UV radiation degradation were observed. Furthermore, permeability of three different gasses was determined. EOC nanocomposites perform a higher elongation at break, especially EOC-45. Dynamic Mechanical Analysis (DMA) showed an increase of E' modulus of all nanocomposites in a wide range of temperatures compared to pure EOC. Intercalation of nanofillers was studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It has been proved that EOC-45 has a better dispersion EOC-17. DSC analysis showed a shift in a crystallization temperature for EOC-17, where the nanofiller acted as a nucleation agent due to the worse dispersion. Barrier properties were improved by almost 100% by addition of organoclay for all measured gasses; they were best for EOC-17 nanocomposites due to a higher crystallinity. XRD together with transmission electron microscopy (TEM) showed much better dispersion for EOC-45 nanocomposites. Fourier transform infrared spectroscopy (FTIR) and accelerated UV aging showed C=O peaks for EOC nanocomposites. © 2017 Society of Plastics Engineers. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007868
utb.identifier.obdid 43878930
utb.identifier.scopus 2-s2.0-85030157720
utb.identifier.wok 000454635300032
utb.identifier.coden PCOMD
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:49Z
dc.date.available 2018-04-23T15:01:49Z
dc.description.sponsorship TBU in Zlin [TA03010799, FR-TI 4/623, IGA/FT/2017/007]
utb.contributor.internalauthor Tesaříková, Alice
utb.contributor.internalauthor Měřínská, Dagmar
utb.contributor.internalauthor Kalous, Jiří
utb.contributor.internalauthor Svoboda (FT), Petr
utb.fulltext.affiliation Alice Tesarikova , Dagmar Merinska, Jiri Kalous, Petr Svoboda Department of Polymer Engineering, Faculty of Technology, Tomas, Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic 762 72 Correspondence to: A. Tesarikova; e-mail: atesarikova@ft.utb.cz or D. Merinska; e-mail: merinska@ft.utb.cz
utb.fulltext.dates -
utb.fulltext.references 1. X.J. Gao, L.Q. Huang, and X. Li, Adv. Print. Packag. Tech- nol., 262, 581 (2013). 2. H.B. Mu, W. Gao, Z.S. Chang, G.L. Wang, and G.J. Zhang, IEEE Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), 160 (2013). 3. R.J. Xu, X.D. Chen, J.Y. Xie, Q. Cai, and C.H. Lei, Ind. Eng. Chem. Res., 54, 2991 (2015). 4. R. Theravalappil, P. Svoboda, J. Vilcakova, S. Poongavalappil, P. Slobodian, and D. Svobodova, Mater. Des., 60, 458 (2014). 5. C. Grein, M. Gahleitner, and K. Bernreitner, Express Polym. Lett., 6, 688 (2012). 6. R. Rajeshbabu, U. Gohs, K. Naskar, V. Thakur, U. Wagenknecht, and G. Heinrich, Radiat. Phys. Chem., 80, 1398 (2011). 7. R. Dangtungee, S.S. Desai, S. Tantayanon, and P. Supaphol, Polym. Test., 25, 888 (2006). 8. P. Doshev, D. Tomova, A. Wutzler, and H.J. Radusch, J. Polym. Eng., 25, 375 (2005). 9. P. Svoboda, Polym. Bull., 74, 121 (2017). 10. Y.B. Fu, D.L. Li, and W.C. Xu, Thirteenth National Conf. on Packaging Engineering, TNCPE 13, 129 (2010). 11. Z. Najarzadeh, A. Ajji, and J.B. Bruchet, Rheol. Acta, 54, 377 (2015). 12. R. Shemesh, M. Krepker, D. Goldman, Y. Danin-Poleg, Y. Kashi, N. Nitzan, A. Vaxman, and E. Segal, Polym. Adv. Technol., 26, 110 (2015). 13. P.M. Wood-Adams, J.M. Dealy, A.W. deGroot, and O.D. Redwine, Macromolecules, 33, 7489 (2000). 14. M.W.C. Guimaraes, F.M.B. Coutinho, M.C.G. Rocha, A. Farah, and R.E.S. Bretas, Polym. Test., 22, 843 (2003). 15. A.L.N. Silva, M.C.G. Rocha, and F.M.B. Coutinho, Polym. Test., 21, 289 (2002). 16. R.R. Babu, N.K. Singha, and K. Naskar, Polym. Bull., 66, 95 (2011). 17. R.R. Babu, N.K. Singha, and K. Naskar, Express Polym. Lett., 4, 197 (2010). 18. D. Pizele, V. Kalkis, R.M. Meri, T. Ivanova, and J. Zicans, Mech. Compos. Mater., 44, 191 (2008). 19. X.L. Yan, X.H. Xu, T.B. Zhu, C.H. Zhang, N. Song, and L. Zhu, Mater. Sci. Eng. A-Struct., 476, 120 (2008). 20. N. Tortorella and C.L. Beatty, Polym. Eng. Sci., 48, 2098 (2008). 21. W.Y. Guo and B. Peng, J. Elastom. Plast., 40, 61 (2008). 22. A. Grigalovica, R.M. Merijs, and J. Zicans, Eng. Mater. Tri- bol., Xxii, 114 (2014). 23. M. Jaziri, N. Mnif, V. Massardier-Nageotte, and H. Perier- Camby, Polym. Eng. Sci., 47, 1009 (2007). 24. H.L. Kim, D. Rana, H. Kwag, and S. Choe, J. Ind. Eng. Chem., 6, 115 (2000). 25. K. Wang, F. Addiego, N. Bahlouli, S. Ahzi, Y. Remond, and V. Toniazzo, Compos. Sci. Technol., 95, 89 (2014). 26. O. Saravari, H. Waipunya, and S. Chuayjuljit, J. Elastom. Plast., 46, 175 (2014). 27. I. Bochkov, R.M. Meri, J. Zicans, T. Ivanova, and J. Grabis, Eng. Mater. Tribol., Xxii, 130 (2014). 28. S. Bagheri-Kazemabad, D. Fox, Y.H. Chen, H.Z. Zhang, and B.Q. Chen, Polym. Adv. Technol., 25, 1116 (2014). 29. S.H.K. Devi, G.M. Shashidhara, and A.K. Ghosh, Compos. Interface, 17, 217 (2010). 30. J. Golebiewski, A. Rozanski, and A. Galeski, Polimery, 51, 374 (2006). 31. R.S. Chauhan, R. Chaturvedi, and P.K. Gutch, Def. Sci. J., 56, 649 (2006). 32. Kusmono, Z.A.M. Ishak, W.S. Chow, and T. Takeichi, Express Polym. Lett., 2, 655 (2008). 33. B.N. Narayanan, R. Koodathil, T. Gangadharan, Z. Yaakob, F.K. Saidu, and S. Chandralayam, Mater. Sci. Eng. B-Adv., 168, 242 (2010). 34. N. Hasegawa, H. Okamoto, M. Kato, and A. Usuki, J. Appl. Polym. Sci., 78, 1918 (2000). 35. P. Svoboda, C.C. Zeng, H. Wang, L.J. Lee, and D.L. Tomasko, J. Appl. Polym. Sci., 85, 1562 (2002). 36. F. Bellucci, A. Terenzi, A. Leuteritz, D. Pospiech, A. Frache, G. Traverso, and G. Camino, Polym. Adv. Technol., 19, 547 (2008). 37. W.R. Caseri, Mater. Sci. Technol.-Lond., 22, 807 (2006). 38. L.B. Manfredi, D. Puglia, A. Tomasucci, J.M. Kenny, and A. Vazquez, Macromol. Mater. Eng., 293, 878 (2008). 39. J. Soulestin, B.J. Rashmi, S. Bourbigot, M.F. Lacrampe, and P. Krawczak, Macromol. Mater. Eng., 297, 444 (2012). 40. T. Kuila, T. Tripathy, and J.H. Lee, Conf. On Woodhead Publication in Materials, 181 (2012). 41. F. Zandi, M. Rezaei, and A. Kasiri, Compos. Sci. Technol., Pts 1 and 2, 471–472, 751 (2011). 42. P. Santamaria, J.I. Eguiazabal, and J. Nazabal, J. Appl. Polym. Sci., 119, 1762 (2011). 43. C.S. Reddy, P.K. Patra, and C.K. Das, Macromol. Symp., 277, 119 (2009). 44. M. Maiti, S. Sadhu, and A.K. Bhowmick, J. Appl. Polym. Sci., 101, 603 (2006). 45. H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, and D.R. Paul, Polymer, 42, 9513 (2001). 46. P. Svoboda, R. Theravalappil, D. Svobodova, P. Mokrejs, K. Kolomaznik, K. Mori, T. Ougizawa, and T. Inoue, Polym. Test., 29, 742 (2010). 47. P.S. Chum, C.I. Kao, and G.W. Knight, Plast. Eng., 51, 21 (1995). 48. K.R. Mahest, H.N. Murthy, B.E. Kumaraswamy, N. Raghavendra, R. Sridhar, M. Krishna, N. Pattar, R. Pall, and B.S. Sherigara, Front. Chem. China, 6, 153 (2011).
utb.fulltext.sponsorship This article was written with the support of the project TA03010799, FR-TI 4/623, and IGA/FT/2017/007 TBU in Zlin.
utb.scopus.affiliation Department of Polymer Engineering, Faculty of TechnologyTomas, Bata University in Zlin, Vavreckova 275Zlin 762 72Czech Republic
utb.fulltext.projects TA03010799
utb.fulltext.projects FR-TI 4/623
utb.fulltext.projects IGA/FT/2017/007
Find Full text

Files in this item

Show simple item record