TBU Publications
Repository of TBU Publications

Use of interelectrode material transfer of nickel and copper‑nickel alloy to carbon fibers to assemble miniature glucose sensors

DSpace Repository

Show simple item record


dc.title Use of interelectrode material transfer of nickel and copper‑nickel alloy to carbon fibers to assemble miniature glucose sensors en
dc.contributor.author Rozsypal, Jan
dc.contributor.author Říman, Daniel
dc.contributor.author Halouzka, Vladimír
dc.contributor.author Opletal, Tomáš
dc.contributor.author Jirovský, David
dc.contributor.author Prodromidis, Mamas
dc.contributor.author Hrbáč, Jan
dc.relation.ispartof Journal of Electroanalytical Chemistry
dc.identifier.issn 1572-6657 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 816
dc.citation.spage 45
dc.citation.epage 53
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.jelechem.2018.03.039
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1572665718302091
dc.subject Non enzymatic glucose sensor en
dc.subject Anodic dissolution en
dc.subject Nickel nanoparticles en
dc.subject Copper nickel alloyed nanoparticles en
dc.subject Carbon fiber microelectrode en
dc.description.abstract Electrochemical deposition of the material released by anodizing nickel and copper nickel alloy in pure water onto carbon fiber microelectrodes was used to assemble miniature glucose sensors. The composition and morphology of the deposits was investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The deposition of anode-derived materials proceeded by two consecutive mechanisms, which are explained in detail. The electrochemical properties of the designed electrodes were subsequently investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The different Ni- and mixed CuNi-modified microelectrodes were examined as glucose sensors and the best performing electrodes based on the alloyed deposit exhibited very high sensitivity (5720 μA mM−1 cm−2), low detection limit (0.3 μM) and ability to quantify glucose in blood serum. © 2018 Elsevier B.V. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007815
utb.identifier.obdid 43878916
utb.identifier.scopus 2-s2.0-85044141483
utb.identifier.wok 000431156900007
utb.identifier.coden JECHE
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:46Z
dc.date.available 2018-04-23T15:01:46Z
dc.description.sponsorship 15-05198S, GACR, Grantová Agentura České Republiky
dc.description.sponsorship Grant Agency of the Czech Republic [15-05198S]; Palacky University [IGA_PrF2018_027]
utb.contributor.internalauthor Halouzka, Vladimír
utb.fulltext.affiliation Jan Rozsypal a , Daniel Riman a , Vladimir Halouzka b,c , Tomas Opletal a , David Jirovsky a , Mamas Prodromidis d , Jan Hrbac e,⁎ a Department of Analytical Chemistry, Palacky University, Faculty of Science, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic b Univ Hosp Olomouc, Dept. Forens Med & Med Law, Hnevotinska 3, Olomouc 77509, Czech Republic c Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, 76001 Zlin, Czech Republic d Department of Chemistry, University of Ioannina, Ioannina 451 10, Greece e Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ⁎ Corresponding author. E-mail address: jhrbac@mail.muni.cz (J. Hrbac).
utb.fulltext.dates Received 22 January 2018; Received in revised form 16 March 2018; Accepted 20 March 2018; Available online 21 March 2018
utb.fulltext.references [1] J. Prodolliet, C. Hischenhuber, Food authentication by carbohydrate chromatography, Z Lebensm Unters F A 207 (1998) 1–12. [2] M.J. Nozal, J.L. Bernal, L. Toribio, M. Alamo, J.C. Diego, J. Tapia, The use of carbohydrate profiles and chemometrics in the characterization of natural honeys of identical geographical origin, J Agr Food Chem 53 (2005) 3095–3100. [3] T. Acunha, C. Ibanez, V. Garcia-Canas, C. Simo, A. Cifuentes, Recent advances in the application of capillary electromigration methods for food analysis and Foodomics, Electrophoresis 37 (2016) 111–141. [4] J.F. Hong, R.P. Baldwin, Profiling clinically important metabolites in human urine by capillary electrophoresis and electrochemical detection, J Capillary Electrop 4 (1997) 65–71. [5] K. Yamada, K. Kakehi, Recent advances in the analysis of carbohydrates for biomedical use, J Pharmaceut Biomed 55 (2011) 702–727. [6] E.W. Nery, M. Kundys, P.S. Jelen, M. Jonsson-Niedziolka, Electrochemical glucose sensing: is there still room for improvement? Anal. Chem. 88 (2016) 11271–11282. [7] B. Lim, Y.P. Kim, Enzymatic glucose biosensors based on nanomaterials, Adv Biochem Eng Biot 140 (2014) 203–219. [8] J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2008) 814–825. [9] K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors, Mat Sci Eng C-Mater 41 (2014) 100–118. [10] P. Si, Y.J. Huang, T.H. Wang, J.M. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors, RSC Adv. 3 (2013) 3487–3502. [11] K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation, Int J Electrochem Sc 5 (2010) 1246–1301. [12] S.L. Luo, F. Su, C.B. Liu, J.X. Li, R.H. Liu, Y. Xiao, Y. Li, X.N. Liu, Q.Y. Cai, A new method for fabricating a CuO/TiO 2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor, Talanta 86 (2011) 157–163. [13] M.M. Guo, P.S. Wang, C.H. Zhou, Y. Xia, W. Huang, Z.L. Li, An ultrasensitive non-enzymatic amperometric glucose sensor based on a Cu-coated nanoporous gold film involving co-mediating, Sensor Actuat B-Chem 203 (2014) 388–395. [14] A.L. Sun, J.B. Zheng, Q.L. Sheng, A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids, Electrochim. Acta 65 (2012) 64–69. [15] Q.F. Yi, W. Huang, W.Q. Yu, L. Li, X.P. Liu, Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose, Electroanalysis 20 (2008) 2016–2022. [16] D. Riman, K. Spyrou, A.E. Karantzalis, J. Hrbac, M.I. Prodromidis, Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys, Talanta 165 (2017) 466–473. [17] I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Kinetic interpretation of a negative time constant impedance of glucose electrooxidation, J. Phys. Chem. B 112 (2008) 15933–15940. [18] X.F. Bai, W. Chen, Y.F. Song, J.Z. Zhang, R.P. Ge, W. Wei, Z. Jiao, Y.H. Sun, Nickel-copper oxide nanowires for highly sensitive sensing of glucose, Appl. Surf. Sci. 420 (2017) 927–934. [19] M. Chawla, J.K. Randhawa, P.F. Siril, Calcination temperature as a probe to tune the non-enzymatic glucose sensing activity of Cu-Ni bimetallic nanocomposites, New J. Chem. 41 (2017) 4582–4591. [20] K.L. Wu, B.B. Jiang, Y.M. Cai, X.W. Wei, X.Z. Li, W.C. Cheong, Efficient electrocatalyst for glucose and ethanol based on Cu/Ni/N-doped graphene hybrids, Chem. Aust. 4 (2017) 1419–1428. [21] L. Shabnam, S.N. Faisal, A.K. Roy, A.I. Minett, V.G. Gomes, Nonenzymatic multi-species sensor based on Cu-Ni nanoparticle dispersion on doped grapheme, Electrochim. Acta 224 (2017) 295–305. [22] V. Halouzka, P. Jakubec, L. Kvitek, V. Likodimos, A.G. Kontos, K. Papadopoulos, P. Falaras, J. Hrbac, Deposition of nanostructured ag films on silicon wafers by electrochemical/electrophoretic deposition for electrochemical and SERS sensing, J. Electrochem. Soc. 160 (2013) B54–B59. [23] D. Riman, Z. Bartosova, V. Halouzka, J. Vacek, D. Jirovsky, J. Hrbac, Facile preparation of nanostructured copper-coated carbon microelectrodes for amperometric sensing of carbohydrates, RSC Adv. 5 (2015) 31245–31249. [24] V. Halouzka, B. Halouzkova, D. Jirovsky, D. Hemzal, P. Ondra, E. Siranidi, A.G. Kontos, P. Falaras, J. Hrbac, Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS, Talanta 165 (2017) 384–390. [25] L.P. Bicelli, B. Bozzini, C. Mele, L. D'Urzo, A review of nanostructural aspects of metal electrodeposition, Int J Electrochem Sc 3 (2008) 356–408. [26] V.N. Tseluikin, Anodic dissolution of the copper-nickel alloy under transient conditions, Prot. Met. 44 (2008) 521–523. [27] J. Hrbac, V. Halouzka, L. Trnkova, J. Vacek, eL-Chem viewer: a freeware package for the analysis of electroanalytical data and their post-acquisition processing, Sensors-Basel 14 (2014) 13943–13954. [28] L.L. Shreir, Corrosion, 2d Ed., Newnes-Butterworths, London; Boston, 1976. [29] M. Alsabet, M. Grden, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 1: formation of alpha-Ni(OH)(2) in relation to the polarization potential, polarization time, and temperature, Electrocatalysis 2 (2011) 317–330. [30] M. Alsabet, M. Grden, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 2: formation of beta-Ni(OH)(2) and NiO in relation to the polarization potential, polarization time, and temperature, Electrocatalysis 5 (2014) 136–147. [31] M. Alsabet, M. Grden, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 3: formation of beta-NiOOH in relation to the polarization potential, polarization time, and temperature, Electrocatalysis 6 (2015) 60–71. [32] A. Milchev, W.S. Kruijt, M. Sluytersrehbach, J.H. Sluyters, Distribution of the nucleation rate in the vicinity of a growing spherical cluster. 1. Theory and simulation results, J. Electroanal. Chem. 362 (1993) 21–31. [33] W.S. Kruijt, M. Sluytersrehbach, J.H. Sluyters, A. Milchev, Distribution of the nucleation rate in the vicinity of a growing spherical cluster. 2. Theory of some special cases and experimental results, J. Electroanal. Chem. 371 (1994) 13–26. [34] G.R. Rao, B.G. Mishra, H.R. Sahu, Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiper-azine fuels, Mater. Lett. 58 (2004) 3523–3527. [35] M.D. Cangiano, M.W. Ojeda, A.C. Carreras, J.A. Gonzalez, M.D. Ruiz, A study of the composition and microstructure of nanodispersed Cu-Ni alloys obtained by different routes from copper and nickel oxides, Mater. Charact. 61 (2010) 1135–1146. [36] S.P. Wu, J. Ni, L. Jiao, Z.N. Zeng, Preparation of ultra-fine copper-nickel bimetallic powders with hydrothermal-reduction method, Mater. Chem. Phys. 105 (2007) 71–75. [37] S.P. Wu, Preparation of ultra fine nickel-copper bimetallic powder for BME-MLCC, Microelectron. J. 38 (2007) 41–46. [38] W. Burgstaller, M. Hafner, M. Voith, A.I. Mardare, A.W. Hassel, Copper-nickel oxide thin film library reactively co-sputtered from a metallic sectioned cathode, J. Mater. Res. 29 (2014) 148–157. [39] M.B. Thomas, N. Metoki, D. Mandler, N. Eliaz, In situ potentiostatic deposition of calcium phosphate with gentamicin-loaded chitosan nanoparticles on titanium alloy surfaces, Electrochim. Acta 222 (2016) 355–360. [40] M. Ben Thomas, N. Metoki, O. Geuli, O. Sharabani-Yosef, T. Zada, M. Reches, D. Mandler, N. Eliaz, Quickly manufactured, drug eluting, calcium phosphate composite coating, Chemistryselect 2 (2017) 753–758. [41] K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode, Sensor Actuat B-Chem 147 (2010) 642–652. [42] I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology, J. Eur. Ceram. Soc. 28 (2008) 1353–1367. [43] A.R. Boccaccini, I. Zhitomirsky, Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Curr Opin Solid St M 6 (2002) 251–260. [44] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61. [45] Z.H. Liang, Y.J. Zhu, X.L. Hu, Beta-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets, J. Phys. Chem. B 108 (2004) 3488–3491. [46] X.Y. Deng, Z. Chen, Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance, Mater. Lett. 58 (2004) 276–280. [47] S.F. Wang, L.Y. Shi, X. Feng, S.R. Ma, Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation, Mater. Lett. 61 (2007) 1549–1551. [48] D.B. Wang, C.X. Song, Z.S. Hu, X. Fu, Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures, J. Phys. Chem. B 109 (2005) 1125–1129. [49] M.S. Kim, K.B. Kim, A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance, J. Electrochem. Soc. 145 (1998) 507–511. [50] M. Rajamathi, G.N. Subbanna, P.V. Kamath, On the existence of a nickel hydroxide phase which is neither alpha nor beta, J. Mater. Chem. 7 (1997) 2293–2296. [51] J. Heinze, Ultramicroelectrodes in electrochemistry, Angew Chem Int Edit 32 (1993) 1268–1288. [52] P.M. Kovach, W.L. Caudill, D.G. Peters, R.M. Wightman, Faradaic electrochemistry at microcylinder, band, and tubular band electrodes, J. Electroanal. Chem. 185 (1985) 285–295. [53] S.J. Konopka, B. Mcduffie, Diffusion coefficients of ferricyanide and ferrocyanideions in aqueous media, using twin-electrode thin-layer electrochemistry, Anal Chem 42 (1970) (1741-&). [54] T.N. Ramesh, R.V. Kamath, The effect of cobalt on the electrochemical performance of beta-nickel hydroxide electrodes, Electrochim. Acta 53 (2008) 8324–8331. [55] A. Ciszewski, I. Stepniak, Nanoparticles of Ni(OH)(2) embedded in chitosan membrane as electrocatalyst for non-enzymatic oxidation of glucose, Electrochim. Acta 111 (2013) 185–191. [56] S.P. Juraschek, E.R. Miller, A.C. Gelber, Effect of oral vitamin C supplementation on serum uric acid: a meta-analysis of randomized controlled trials, Arthrit Care Res 63 (2011) 1295–1306. [57] C.N. Brett, S.G. Barnett, J. Pearson, Postoperative plasma paracetamol levels following oral or intravenous paracetamol administration: a double-blind randomised controlled trial, Anaesth. Intensive Care 40 (2012) 166–171.
utb.fulltext.sponsorship Financial Support from Grant Agency of the Czech Republic, project No. 15-05198S and Palacky University student grant IGA_PrF_2018_027 is gratefully acknowledged. The authors wish to thank Katerina Krcova, BSc. for assistance with electrochemical measurements.
utb.wos.affiliation [Rozsypal, Jan; Riman, Daniel; Opletal, Tomas; Jirovsky, David] Palacky Univ, Fac Sci, Dept Analyt Chem, 17 Listopadu 12, CZ-77146 Olomouc, Czech Republic; [Halouzka, Vladimir] Univ Hosp Olomouc, Dept Forens Med & Med Law, Hnevotinska 3, Olomouc 77509, Czech Republic; [Halouzka, Vladimir] Tomas Bata Univ Zlin, Dept Phys & Mat Engn, Fac Technol, Nam TG Masaryka 275, Min 76001, Czech Republic; [Prodromidis, Mamas] Univ Ioannina, Dept Chem, GR-45110 Ioannina, Greece; [Hrbac, Jan] Masaryk Univ, Dept Chem, Fac Sci, Kamenice 5, Brno 62500, Czech Republic
utb.scopus.affiliation Department of Analytical Chemistry, Palacky University, Faculty of Science, 17. listopadu 12, Olomouc, Czech Republic; Univ Hosp Olomouc, Dept. Forens Med & Med Law, Hnevotinska 3, Olomouc, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, Zlin, Czech Republic; Department of Chemistry, University of Ioannina, Ioannina, Greece; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
utb.fulltext.projects 15-05198S
utb.fulltext.projects IGA_PrF_2018_027
Find Full text

Files in this item

Show simple item record