TBU Publications
Repository of TBU Publications

Effect of die exit stress state, Deborah number, uniaxial and planar extensional rheology on the neck-in phenomenon in polymeric flat film production

DSpace Repository

Show simple item record


dc.title Effect of die exit stress state, Deborah number, uniaxial and planar extensional rheology on the neck-in phenomenon in polymeric flat film production en
dc.contributor.author Barbořík, Tomáš
dc.contributor.author Zatloukal, Martin
dc.relation.ispartof Journal of Non-Newtonian Fluid Mechanics
dc.identifier.issn 0377-0257 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 255
dc.citation.spage 39
dc.citation.epage 56
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.jnnfm.2018.03.002
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0377025717305098
dc.subject Deborah number en
dc.subject Flat film production en
dc.subject Neck-in phenomenon en
dc.subject Planar extensional viscosity en
dc.subject Polymer melt en
dc.subject Rheology en
dc.subject Second to first normal stress difference ratio en
dc.subject Uniaxial extensional viscosity en
dc.description.abstract In this work, effect of the second to first normal stress difference ratio at the die exit, −N2/N1, uniaxial extensional strain hardening, [Formula presented], planar-to-uniaxial extensional viscosity ratio, [Formula presented], and Deborah number, De, has been investigated via viscoelastic isothermal modeling utilizing 1D membrane model and a single-mode modified Leonov model as the constitutive equation. Based on the performed parametric study, it was found that there exists a threshold value for De and [Formula presented], above which, the neck-in starts to be strongly dependent on −N2/N1. It was found that such critical De decreases if −N2/N1, [Formula presented] increases and/or [Formula presented] decreases. Numerical solutions of the utilized model were successfully approximated by a dimensionless analytical equation relating the normalized maximum attainable neck-in with [Formula presented], [Formula presented], −N2/N1 and De. Suggested equation was tested by using literature experimental data considering that −N2/N1 depends on die exit shear rate, temperature and utilized constitutive model parameters for given polymer melt. It was found that approximate model predictions are in a very good agreement with the corresponding experimental data for low as well as very high Deborah numbers, at which neck-in strongly depends on −N2/N1. It is believed that the obtained knowledge together with the suggested simple model can be used for optimization of the extrusion die design (influencing flow history and thus die exit stress state), molecular architecture of polymer melts and processing conditions to suppress neck-in phenomenon in production of very thin polymeric flat films. © 2018 Elsevier B.V. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007814
utb.identifier.obdid 43878915
utb.identifier.scopus 2-s2.0-85043591282
utb.identifier.wok 000431936000004
utb.identifier.coden JNFMD
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:46Z
dc.date.available 2018-04-23T15:01:46Z
dc.description.sponsorship 1 6-05886S, GACR, Grantová Agentura České Republiky
dc.description.sponsorship Grant Agency of the Czech Republic [16-05886S]
utb.contributor.internalauthor Barbořík, Tomáš
utb.contributor.internalauthor Zatloukal, Martin
utb.fulltext.affiliation Tomas Barborik, Martin Zatloukal ⁎ Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic ⁎ Corresponding author. E-mail address: mzatloukal@utb.cz (M. Zatloukal).
utb.fulltext.dates Received 6 November 2017; Received in revised form 1 March 2018; Accepted 3 March 2018; Available online 06 March 2018
utb.fulltext.references [1] T. Kanai, G.A. Campbell, Film Processing Advances, Second Ed., Hanser Publishers, Munich, 2014. [2] T. Kanai, G.A. Campbell, Film Processing, Hanser Publishers, Munich, 1999. [3] R.J. Fisher, M.M. Denn, Finite-amplitude stability and draw resonance in isothermal melt spinning, Chemical Engineering Science 30 (1975) 1129–1134. [4] R.J. Fisher, M.M. Denn, A theory of isothermal melt spinning and draw resonance, AIChE Journal 22 (1976) 236–246. [5] D. Gelder, The stability of fiber drawing processes, Industrial & Engineering Chemistry Fundamentals 10 (1971) 534–535. [6] Y.L. Yeow, On the stability of extending films: a model for the film casting process, Journal of Fluid Mechanics 66 (1974) 613–622. [7] G.R. Aird, Y.L. Yeow, Stability of film casting of power-law liquids, Industrial & Engineering Chemistry Fundamentals 22 (1983) 7–10. [8] N.R. Anturkar, A. Co, Draw resonance in film casting of viscoelastic fluids: a linear stability analysis, Journal of Non-Newtonian Fluid Mechanics 28 (1988) 287–307. [9] V.R. Iyengar, A. Co, Film casting of a modified Giesekus fluid: a steady-state analysis, Journal of Non-Newtonian Fluid Mechanics 48 (1993) 1–20. [10] V.R. Iyengar, A. Co, Film casting of a modified Giesekus fluid: stability analysis, Chemical Engineering Science 51 (1996) 1417–1430. [11] J.P. Sergent, Etude de deux procédés de fabrication de films. Le soufflage de gaine. L'extrusion de film à plat., in: Strasbourg, France, 1977. [12] D. Cotto, P. Duffo, J.M. Haudin, Cast film extrusion of polypropylene films, International Polymer Processing 4 (1989) 103–113. [13] P. Duffo, B. Monasse, J.M. Haudin, Cast film extrusion of polypropylene. Thermomechanical and physical aspects, Journal of Polymer Engineering 10 (1991) 151–229. [14] P. Barq, J.M. Haudin, J.F. Agassant, Isothermal and anisothermal models for cast film extrusion, International Polymer Processing 7 (1992) 334–349. [15] S. D'Halewyu, J.F. Agassant, Y. Demay, Numerical simulation of the cast film process, Polymer Engineering & Science 30 (1990) 335–340. [16] B. Debbaut, J.M. Marchal, M.J. Crochet, Viscoelastic effects in film casting, Zeitschrift für angewandte Mathematik und Physik 46 (1995) 679–698. [17] W.S. Smith, Simulating the Cast Film Process Using an Updated Lagrangian Finite Element Algorithm, McMaster University, 2001. [18] N. Satoh, H. Tomiyama, T. Kajiwara, Viscoelastic simulation of film casting process for a polymer melt, Polymer Engineering & Science 41 (2001) 1564–1579. [19] O.S. Narayanaswamy, A one-dimensional model of stretching float glass, Journal of the American Ceramic Society 60 (1977) 1–5. [20] D. Silagy, Y. Demay, J.F. Agassant, Study of the stability of the film casting process, Polymer Engineering & Science 36 (1996) 2614–2625. [21] D. Silagy, Y. Demay, J.F. Agassant, Stationary and stability analysis of the film casting process, Journal of Non-Newtonian Fluid Mechanics 79 (1998) 563–583. [22] K. Sakaki, R. Katsumoto, T. Kajiwara, K. Funatsu, Three-dimensional flow simulation of a film-casting process, Polymer Engineering & Science 36 (1996) 1821–1831. [23] H. Zheng, W. Yu, C. Zhou, H. Zhang, Three-dimensional simulation of the non-isothermal cast film process of polymer melts, Journal of Polymer Research 13 (2006) 433–440. [24] G. Lamberti, G. Titomanlio, V. Brucato, Measurement and modelling of the film casting process 1. Width distribution along draw direction, Chemical Engineering Science 56 (2001) 5749–5761. [25] G. Lamberti, G. Titomanlio, V. Brucato, Measurement and modelling of the film casting process 2. Temperature distribution along draw direction, Chemical Engineering Science 57 (2002) 1993–1996. [26] G. Lamberti, V. Brucato, G. Titomanlio, Orientation and crystallinity in film casting of polypropylene, Journal of Applied Polymer Science 84 (2002) 1981–1992. [27] G. Lamberti, F. De Santis, V. Brucato, G. Titomanlio, Modeling the interactions between light and crystallizing polymer during fast cooling, Applied Physics A 78 (2004) 895–901. [28] G. Lamberti, Flow-induced crystallization during isotactic polypropylene film casting, Polymer Engineering & Science 51 (2011) 851–861. [29] G. Titomanlio, G. Lamberti, Modeling flow induced crystallization in film casting of polypropylene, Rheologica Acta 43 (2004) 146–158. [30] G. Lamberti, G. Titomanlio, Analysis of film casting process: the heat transfer phenomena, Chemical Engineering and Processing Process Intensification 44 (2005) 1117–1122. [31] G. Lamberti, G. Titomanlio, Analysis of film casting process : effect of cooling during the path in air, Industrial & Engineering Chemistry Research 45 (2006) 719–723. [32] H. Ito, M. Doi, T. Isaki, M. Takeo, K. Yagi, 2D flow analysis of film casting process, Journal of Society of Rheology Japan 31 (2003) 149–155. [33] H. Ito, M. Doi, T. Isaki, M. Takeo, A model of neck-in phenomenon in film casting process, Journal of Society of Rheology Japan 31 (2003) 157–163. [34] C.W. Seay, D.G. Baird, Sparse long-chain branching's effect on the film-casting behavior of PE, International Polymer Processing 24 (2009) 41–49. [35] C.D. McGrady, C.W. Seay, D.G. Baird, Effect of sparse long-chain branching on the film-casting behavior for a series of well-defined HDPEs, International Polymer Processing 24 (2009) 428–438. [36] H. Kometani, T. Matsumura, T. Suga, T. Kanai, Experimental and theoretical analyses of film casting process, Journal of Polymer Engineering 27 (2007) 1–28. [37] H.V. Pol, S.S. Thete, P. Doshi, A.K. Lele, Necking in extrusion film casting: the role of macromolecular architecture, Journal of Rheology 57 (2013) 559–583. [38] H.V. Pol, S. Banik, L.B. Azad, S.S. Thete, P. Doshi, A. Lele, Nonisothermal analysis of extrusion film casting process using molecular constitutive equations, Rheologica Acta 53 (2014) 85–101. [39] K. Chikhalikar, S. Banik, L.B. Azad, K. Jadhav, S. Mahajan, Z. Ahmad, S. Kulkarni, S. Gupta, P. Doshi, H.V. Pol, A. Lele, Extrusion film casting of long chain branched polypropylene, Polymer Engineering & Science 55 (2015) 1977–1987. [40] S.S. Thete, P. Doshi, H.V. Pol, New insights into the use of multi-mode phenomenological constitutive equations to model extrusion film casting process, Journal of Plastic Film and Sheeting 33 (2017) 35–71. [41] R. Dhadwal, S. Banik, P. Doshi, H.V. Pol, Effect of viscoelastic relaxation modes on stability of extrusion film casting process modeled using multi-mode Phan–Thien–Tanner constitutive equation, Applied Mathematical Modelling 47 (2017) 487–500. [42] H.V. Pol, S.S. Thete, Necking in extrusion film casting: numerical predictions of the Maxwell model and comparison with experiments, Journal of Macromolecular Science Part B 55 (2016) 984–1006. [43] T. Dobroth, L. Erwin, Causes of edge beads in cast films, Polymer Engineering & Science 26 (1986) 462–467. [44] N. Toft, M. Rigdahl, Extrusion coating with metallocene-catalysed polyethylenes, International Polymer Processing 17 (2002) 244–253. [45] S. Kouda, Prediction of processability at extrusion coating for low-density poly- ethylene, Polymer Engineering & Science 48 (2008) 1094–1102. [46] S. Shiromoto, Y. Masutani, M. Tsutsubuchi, Y. Togawa, T. Kajiwara, A neck-in model in extrusion lamination process, Polymer Engineering & Science 50 (2010) 22–31. [47] S. Shiromoto, Y. Masutani, M. Tsutsubuchi, Y. Togawa, T. Kajiwara, The effect of viscoelasticity on the extrusion drawing in film-casting process, Rheologica Acta 49 (2010) 757–767. [48] S. Shiromoto, The mechanism of neck-in phenomenon in film casting process, International Polymer Processing 29 (2014) 197–206. [49] K. Christodoulou, S.G. Hatzikiriakos, D. Vlassopoulos, Stability analysis of film casting for PET resins using a multimode Phan–Thien–Tanner constitutive equation, Journal of Plastic Film and Sheeting 16 (2000) 312–332. [50] S. Smith, D. Stolle, Numerical simulation of film casting using an updated Lagrangian finite element algorithm, Polymer Engineering & Science 43 (2003) 1105–1122. [51] S. Bourrigaud, G. Marin, V. Dabas, C. Dupuy, D. Silagy, The draw ratio-Deborah number diagram: a useful tool for coating applications, Polymer Engineering & Science 46 (2006) 372–380. [52] J.M. Kim, J.S. Lee, D.M. Shin, H.W. Jung, J.C. Hyun, Transient solutions of the dynamics of film casting process using a 2-D viscoelastic model, Journal of Non-Newtonian Fluid Mechanics 132 (2005) 53–60. [53] T. Kajiwara, M. Yamamura, T. Asahina, Relationship between Neck-in phenomena and rheological properties in film casting, Nihon Reoroji Gakkaishi 34 (2006) 97–103. [54] M.E. Pis-Lopez, A. Co, Multilayer film casting of modified Giesekus fluids Part 1. Steady-state analysis, Journal of Non-Newtonian Fluid Mechanics 66 (1996) 71–93. [55] T. Barborik, M. Zatloukal, C. Tzoganakis, On the role of extensional rheology and Deborah number on the neck-in phenomenon during flat film casting, International Journal of Heat and Mass Transfer 111 (2017) 1296–1313. [56] V.R. Iyengar, Film Casting of Polymer Melts, University of Maine, 1993. [57] G. Oliver, Internally deckled coating dies, Proceedings of the TAPPI European PLACE Conference, Athens; Greece, 2007, pp. 311–339. [58] M. Zatloukal, R. Kolarik, Investigation of convective heat transfer in 9-layer film blowing process by using variational principles, International Journal of Heat and Mass Transfer 86 (2015) 258–267. [59] J. Musil, M. Zatloukal, Effect of die exit geometry on internal die drool phenomenon during linear HDPE melt extrusion, International Journal of Heat and Mass Transfer 56 (2013) 667–673. [60] R. Kolarik, M. Zatloukal, M. Martyn, The effect of polyolefin extensional rheology on non-isothermal film blowing process stability, International Journal of Heat and Mass Transfer 56 (2013) 694–708. [61] A.I. Leonov, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheologica Acta 15 (1976) 85–98. [62] A.I. Leonov, E.H. Lipkina, E.D. Paskhin, A.N. Prokunin, Theoretical and experimental investigation of shearing in elastic polymer liquids, Rheologica Acta 15 (1976) 411–426. [63] A.I. Leonov, A.N. Prokunin, An improved simple version of a nonlinear theory of elasto-viscous polymer media, Rheologica Acta 19 (1980) 393–403. [64] A.I. Leonov, A.N. Prokunin, On nonlinear effects in the extensional flow of polymeric liquids, Rheologica Acta 22 (1983) 137–150. [65] M. Simhambhatla, A.I. Leonov, On the rheological modeling of viscoelastic polymer liquids with stable constitutive equations, Rheologica Acta 34 (1995) 259–273. [66] A.I. Leonov, Constitutive equations for viscoelastic liquids: formulation, analysis and comparison with data, Rheology Series 8 (1999) 519–575. [67] M. Zatloukal, Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows, Journal of Non-Newtonian Fluid Mechanics 113 (2003) 209–227. [68] M. Beaulne, E. Mitsoulis, Numerical simulation of the film casting process, International Polymer Processing 14 (1999) 261–275. [69] J. Drabek, M. Zatloukal, Evaluation of Thermally induced degradation of branched polypropylene by using rheology and different constitutive equations, Polymers (Basel) 8 (2016) 317. [70] C.W. Macosko, Rheology : Principles, Measurements, and Applications, VCH, 1994. [71] J. Vlachopoulos, J.R. Wagner, The SPE Guide on Extrusion Technology and Troubleshooting, The Society of Plastics Engineers, Brookfield, 2001. [72] M. Zatloukal, Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt, Polymer (Guildf) 104 (2016) 258–267. [73] J.D. Ferry, Viscoelastic Properties of Polymers, Third Ed., John Wiley & Sons, New York, 1980. [74] J.M. Dealy, R.G. Larson, Structure and Rheology of Molten Polymers – From Structure to Flow Behavior and Back Again, Hanser Publishers, Munich, 2006. [75] C.W. Macosko, Rheology: Principles, Measurements, and Applications, Wiley, New York, NY, 1994. [76] E.A. Jensen, J.deC. Christiansen, Measurements of first and second normal stress differences in a polymer melt, Journal of Non-Newtonian Fluid Mechanics 148 (2008) 41–46.
utb.fulltext.sponsorship The authors wish to acknowledge the financial support from the Grant Agency of the Czech Republic (Grant registration No. 16-05886S).
utb.wos.affiliation [Barborik, Tomas; Zatloukal, Martin] Tomas Bata Univ Zlin, Fac Technol, Polymer Ctr, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic
Find Full text

Files in this item

Show simple item record