TBU Publications
Repository of TBU Publications

Modelling, detecting and evaluating water ingress in aviation honeycomb panels

DSpace Repository

Show simple item record


dc.title Modelling, detecting and evaluating water ingress in aviation honeycomb panels en
dc.contributor.author Vavilov, Vladimir P.
dc.contributor.author Pan, Yang Yang
dc.contributor.author Moskovchenko, A. I.
dc.contributor.author Čapka, Alexander
dc.relation.ispartof Quantitative InfraRed Thermography Journal
dc.identifier.issn 1768-6733 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 14
utb.relation.issue 2
dc.citation.spage 206
dc.citation.epage 217
dc.type article
dc.language.iso en
dc.publisher Taylor and Francis
dc.identifier.doi 10.1080/17686733.2017.1317443
dc.relation.uri http://www.tandfonline.com/doi/abs/10.1080/17686733.2017.1317443
dc.subject Infrared thermography en
dc.subject nondestructive testing en
dc.subject water ingress en
dc.subject honeycomb panel en
dc.description.abstract The use of infrared thermography for quantitative evaluation of water ingress in aviation honeycomb cells is discussed. Numerical modelling has been performed by analysing a 3D panel model where water fully or partially occupies honeycomb cells. Calculation of several test cases has allowed better understanding of how the thickness of the water layer affects surface temperature anomalies and times of their appearance in active one-sided thermal tests. Experimental results have been obtained on both reference samples and real honeycomb panels. © 2017 Informa UK Limited, trading as Taylor & Francis Group en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007408
utb.identifier.obdid 43876569
utb.identifier.scopus 2-s2.0-85019050542
utb.identifier.wok 000413855300007
utb.source j-scopus
dc.date.accessioned 2017-09-08T12:14:53Z
dc.date.available 2017-09-08T12:14:53Z
dc.description.sponsorship Russian Ministry of Higher Education [9.5966.2017/BY]; National Natural Science Foundation of China [61571028]
utb.contributor.internalauthor Čapka, Alexander
utb.fulltext.affiliation V. P. Vavilov a,b , Y. Pan a , A. I. Moskovchenko a and A. Čapka c a Institute of Nondestructive Testing, Tomsk Polytechnic University, Tomsk, Russia; b Department of Mechanics and Mathematics, Tomsk State University, Tomsk, Russia; c Department of Production Engineering, Tomas Bata University in Zlín, Zlín, Czech Republic CONTACT V. P. Vavilov vavilov@tpu.ru
utb.fulltext.dates Received 9 November 2016 Accepted 29 March 2017
utb.fulltext.references [1] Vavilov V, Klimov A, Nesteruk D. Detecting water in aviation honeycomb structures by using transient IR thermographic NDT. Proceedings of SPIE “Thermosense-XXV”; 2003 April 1-3; Orlando (FL): SPIE; 2003; 5073: 345–354. [2] Vavilov VP, Nesteruk DA. Detecting water in aviation honeycomb structures: the quantitative approach. J Quant InfraRed Thermogr. 2004;1(2):173–184. [3] Marinetti S, Vavilov V. Sensitivity analysis of classical heat conduction solutions applied to materials characterization. Int J Heat Transf Eng. 2005;26(9):50–60. [4] Vavilov VP. Modeling thermal NDT problems. Intern J Heat and Mass Transf. 2014;72:76–86. [5] Maillet D, Andre S, Batsale J-C, Degiovanni A. Thermal quadrupoles: solving the heat equation through integral transforms. England: John Wiley & Sons Publisher; 2000. [6] Vavilov VP, Burleigh DD, Demin VG. Advanced modeling of thermal NDT problems: from buried landmines to defects in composites. Proceedings of SPIE “Thermosense-XXIV”; 2002 Apr 1–7; Orlando (FL): SPIE; 2002; 4710: 507–521. [7] Vavilov VP, Pan Y-Y, Nesteruk DA. Infrared thermographic inspection of water ingress in composite honeycomb panels. Appl Optics. 2016;55:D120–D125. [8] Balageas DL, Krapez J-C, Cielo P. Pulsed photo-thermal modeling of layered materials. J Appl Phys. 1986;59(2):348–357. [9] Vavilov VP, Marinetti S, Pan Y, Chulkov AO. Detecting water ingress in aviation honeycomb panels: Qualitative and quantitative aspects. Poly Test. 2016;54:270–280. [10] Vavilov VP, Burleigh DD. Review of pulsed thermal NDT: Physical principles, theory and data processing. NDT & E Int. 2015;73:28– 52.
utb.fulltext.sponsorship This work was supported in part by the Grant [grant number NIR #9.5966.2017/BY], State Order of the Russian Ministry of Higher Education for 2017–2019, and in part by National Natural Science Foundation of China under Grant [grant number #61571028].
utb.wos.affiliation [Vavilov, V. P.; Pan, Y.; Moskovchenko, A. I.] Tomsk Polytech Univ, Inst Nondestruct Testing, Tomsk, Russia; [Vavilov, V. P.] Tomsk State Univ, Dept Mech & Math, Tomsk, Russia; [Capka, A.] Tomas Bata Univ Zlin, Dept Prod Engn, Zlin, Czech Republic
utb.scopus.affiliation Institute of Nondestructive Testing, Tomsk Polytechnic University, Tomsk, Russia; Department of Mechanics and Mathematics, Tomsk State University, Tomsk, Russia; Department of Production Engineering, Tomas Bata University in Zlín, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record