TBU Publications
Repository of TBU Publications

Experimental and numerical research of the thermal properties of a PCM window panel

DSpace Repository

Show simple item record

dc.title Experimental and numerical research of the thermal properties of a PCM window panel en
dc.contributor.author Koláček, Martin
dc.contributor.author Charvátová, Hana
dc.contributor.author Sehnálek, Stanislav
dc.relation.ispartof Sustainability (Switzerland)
dc.identifier.issn 2071-1050 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 9
utb.relation.issue 7
dc.type article
dc.language.iso en
dc.publisher Molecular Diversity Preservation International (MDPI)
dc.identifier.doi 10.3390/su9071222
dc.relation.uri http://www.mdpi.com/2071-1050/9/7/1222/htm
dc.subject phase change material (PCM) en
dc.subject thermal cycle test en
dc.subject supercooling en
dc.subject calorimetric chamber en
dc.subject incongruent melting en
dc.subject thermal imager en
dc.description.abstract This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs). In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle. © 2017 by the authors. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007281
utb.identifier.obdid 43876499
utb.identifier.scopus 2-s2.0-85023758345
utb.identifier.wok 000406709500150
utb.source j-scopus
dc.date.accessioned 2017-09-03T21:40:08Z
dc.date.available 2017-09-03T21:40:08Z
dc.description.sponsorship Ministry of Education, Youth and Sports of Czech Republic within National Sustainability Programme [LO1303(MSMT-7778/2014)]; European Regional Development Fund under project CEBIA-Tech [CZ.1.02/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CebiaTech/2017/002]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Koláček, Martin
utb.contributor.internalauthor Charvátová, Hana
utb.contributor.internalauthor Sehnálek, Stanislav
utb.fulltext.affiliation Martin Koláček * , Hana Charvátová and Stanislav Sehnálek The Department of Automation and Control Engineering, Faculty of Applied Informatics, Thomas Bata University, 76001 Zlín, Czech Republic; charvatova@fai.utb.cz (H.C.); sehnalek@fai.utb.cz (S.S.) * Correspondence: kolacek@fai.utb.cz; Tel.: +420-57-603-5642
utb.fulltext.dates Received: 26 May 2017; Accepted: 6 July 2017; Published: 12 July 2017
utb.fulltext.references 1. Barzin, R.; Chen, J.J.J.; Young, B.R.; Farid, M.M. Application of PCM Underfloor Heating in Combination with PCM Wallboards for Space Heating using Price Based Control System. Appl. Energy 2015, 148, 39–48. [CrossRef] 2. Weinläder, H.; Klinker, F.; Yasin, M. PCM Cooling Ceilings in the Energy Efficiency Center—Passive Cooling Potential of Two Different System Designs. Energy Build. 2016, 119, 93–100. [CrossRef] 3. Evola, G.; Marletta, L.; Sicurella, F. A Methodology for Investigating the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings. Build. Environ. 2013, 59, 517–527. [CrossRef] 4. Tokuç, A.; Ba ̧saran, T.; Yesügey, S.C. An Experimental and Numerical Investigation on the use of Phase Change Materials in Building Elements: The Case of a Flat Roof in Istanbul. Energy Build. 2015, 102, 91–104. [CrossRef] 5. Goia, F. Thermo-Physical Behaviour and Energy Performance Assessment of PCM Glazing System Configurations: A Numerical Analysis. Front. Archit. Res. 2012, 1, 341–347. [CrossRef] 6. Grynning, S.; Goia, F.; Rognvik, E.; Time, B. Possibilities for Characterization of a PCM Window System using Large Scale Measurements. Int. J. Sustain. Built Environ. 2013, 2, 56–64. [CrossRef] 7. Li, S.; Sun, G.; Zou, K.; Zhang, X. Experimental Research on the Dynamic Thermal Performance of a Novel Triple-Pane Building Window Filled with PCM. Sustain. Cities Soc. 2016, 27, 15–22. [CrossRef] 8. Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 2003, 23, 251–283. [CrossRef] 9. Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase Change Materials for Building Applications: A State-of-the-Art Review. Energy Build. 2010, 42, 1361–1368. [CrossRef]Sustainability 2017, 9, 1222 10. De Gracia, A.; Cabeza, L.F. Phase Change Materials and Thermal Energy Storage for Buildings. Energy Build. 2015, 103, 414–419. [CrossRef] 11. Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2008. 12. Dincer, I.; Marc, R.A. Thermal Energy Storage Systems and Applications, 2nd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2011, ISBN 978-0-470-74706-3. 13. Tyagi, V.V.; Buddhi, D. Thermal Cycle Testing of Calcium Chloride Hexahydrate as a Possible PCM for Latent Heat Storage. Sol. Energy Mater. Sol. Cells 2008, 92, 891–899. [CrossRef] 14. Furbo, S. Heat Storage with an Incongruently Melting Salt Hydrate as Storage Medium Based on the Extra Water Principle; Technical University of Denmark: Lyngby, Denmark, 1980. 15. Porisini, F.C. Salt Hydrates used for Latent Heat Storage: Corrosion of Metals and Reliability of Thermal Performance. Sol. Energy 1988, 41, 193–197. [CrossRef] 16. Asdrubali, F.; Baldinelli, G. Thermal Transmittance Measurements with the Hot Box Method: Calibration, Experimental Procedures, and Uncertainty Analyses of Three Different Approaches. Energy Build. 2011, 43, 1618–1626. [CrossRef] 17. Manz, H.; Egolf, P.; Suter, P.; Goetzberger, A. TIM–PCM External Wall System for Solar Space Heating and Daylighting. Sol. Energy 1997, 61, 369–379. [CrossRef] 18. European Standard EN ISO 12567–1. Thermal Performance of Windows and Doors-Determination of Thermal Transmittance by Hot Box Method—Complete Windows and Doors; International Organization for Standardization: Prague, Czech Republic, 2011. Available online: https://www.iso.org/standard/50327.html (accessed on 7 July 2017). 19. European Standard EN ISO 8990. Thermal Insulation/Determination of Steady State Thermal Transmittance Properties—Calibrated and Guarded Hot Box; International Organization for Standardization: Prague, Czech Republic, 1998. Available online: https://www.iso.org/standard/16519.html (accessed on 7 July 2017). 20. Gao, D.; Deng, T. Energy storage: Preparations and physicochemical properties of solid-liquid Phase change materials for thermal energy storage. Mater. Processes Energy: Commun. Curr. Res. Tech. Dev. 2013, 1, 32–44. 21. Gerlich, V.; Sulovská, K.; Zálešák, M. COMSOL Multiphysics Validation as Simulation Software for Heat Transfer Calculation in Buildings: Building Simulation Software Validation. Measurement 2013, 46, 2003–2012. [CrossRef] 22. Nikishkov, G. Introduction to the Finite Element Method; University of Aizu: Fukushima Prefecture, Japan, 2003. 23. Heim, D. Isothermal Storage of Solar Energy in Building Construction. Renew. Energy 2010, 35, 788–796. [CrossRef] 24. Carbonari, A.; de Grassi, M.; di Perna, C.; Principi, P. Numerical and Experimental Analyses of PCM Containing Sandwich Panels for Prefabricated Walls. Energy Build. 2006, 38, 472–483. [CrossRef] 25. Muhieddine, M.; Canot, E.; March, R. Various Approaches for Solving Problems in Heat Conduction with Phase Change. Available online: http://arphymat.univ-rennes1.fr/publis/2009%20FVM%20Muhieddine.pdf (accessed on 6 July 2017). 26. CSN 73 0548. Calculation of Thermal Load of Air-Conditioned Spaces, International Organization for Standardization: Prague, Czech Republic, 1985.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303(MSMT-7778/2014), by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.02/2.1.00/03.0089, and by the Internal Grant Agency of Tomas Bata University in Zlín under the project No. IGA/CebiaTech/2017/002.
utb.wos.affiliation [Kolacek, Martin; Charvatova, Hana; Sehnalek, Stanislav] Thomas Bata Univ, Fac Appl Informat, Dept Automat & Control Engn, Zilin 76001, Czech Republic
utb.scopus.affiliation The Department of Automation and Control Engineering, Faculty of Applied Informatics, Thomas Bata University, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International