TBU Publications
Repository of TBU Publications

The combined effects of fat content, calcium chloride, and coagulant concentration on the development of cheese curd structure

DSpace Repository

Show simple item record


dc.title The combined effects of fat content, calcium chloride, and coagulant concentration on the development of cheese curd structure en
dc.contributor.author Moudrá, Kateřina
dc.contributor.author Pachlová, Vendula
dc.contributor.author Černíková, Michaela
dc.contributor.author Šopík, Tomáš
dc.contributor.author Buňka, František
dc.relation.ispartof International Dairy Journal
dc.identifier.issn 0958-6946 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 73
dc.citation.spage 92
dc.citation.epage 97
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.idairyj.2017.05.006
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0958694617301279
dc.description.abstract The effects of differing content levels of calcium chloride (approximately 200 and 400 μg Ca per 100 g milk protein) and of a microbial coagulant (3200 and 6400 μL per 100 L of milk; 950 IMCU (international milk coagulating units) mL−1) on the coagulation of cows' milk with various fat levels (0.02–3.77%, w/w) was studied. Non-linear regression analysis was used to evaluate dynamic factors (lag time, tlag; maximum coagulation rate, Cmax; time for the maximum coagulation rate, tmax). Increasing fat content in the milk at constant calcium chloride and coagulant contents had no significant and clear effects on the tlag, Cmax, and tmax values. Increased levels of calcium chloride or microbial coagulant led to a significant decrease in tlag and tmax, and conversely increased Cmax. Therefore, milk fat content had no significant effect on gel development; however, levels of calcium chloride and coagulant significantly influenced gel structure. © 2017 Elsevier Ltd en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007207
utb.identifier.obdid 43876736
utb.identifier.scopus 2-s2.0-85021366598
utb.identifier.wok 000407832400012
utb.identifier.coden IDAJE
utb.source j-scopus
dc.date.accessioned 2017-09-03T21:40:00Z
dc.date.available 2017-09-03T21:40:00Z
dc.description.sponsorship IGA/FT/2016/003, UTB, Univerzita Tomáše Bati ve Zlíně; IGA/FT/2017/004, UTB, Univerzita Tomáše Bati ve Zlíně
dc.description.sponsorship Tomas Bata University in Zlin [IGA/FT/2016/003, IGA/FT/2017/004]; National Agency for Agriculture Research [QK1710156]
utb.contributor.internalauthor Moudrá, Kateřina
utb.contributor.internalauthor Pachlová, Vendula
utb.contributor.internalauthor Černíková, Michaela
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Buňka, František
utb.fulltext.affiliation Kateřina Moudrá, Vendula Pachlová, Michaela Cerníková, Tomáš Sopík, František Buňka* Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, Zlín, Czech Republic * Corresponding author. Tel.: +420 576 033 011. E-mail address: bunka@ft.utb.cz (F. Buňka).
utb.fulltext.dates Received 25 November 2016 Received in revised form 20 May 2017 Accepted 23 May 2017 Available online 12 June 2017
utb.fulltext.references Arango, O., Trujillo, A. J., & Castillo, M. (2013). Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation, and syneresis of milk gels. Journal of Dairy Science, 96, 1984e1996. Awad, S. (2007). Effect of sodium chloride and pH on the rennet coagulation and gel firmness. LWT e Food Science and Technology, 40, 220e224. Castillo, M., Payne, F. A., Hicks, C. L., & López, M. B. (2000). Predicting cutting and clotting time of coagulating goat's milk using diffuse reflectance: Effect of pH temperature and enzyme concentration. International Dairy Journal, 10, 551e562. EU. (2008). EU Regulation of the European Parliament and of the Council (EC) No 1333/2008 of 16 December 2008 on food additives. Brussels, Belgium: European Commission. Fox, P. F., McSweeney, P. L. H., Cogan, T. M., & Guinee, T. P. (2004). Cheese e Chemistry, physics and microbiology (3rd ed.). London, UK: Elsevier Applied Science. Gabriele, D., De Cindio, B., & D'antona, P. (2001). A weak gel model for foods. Rheologica Acta, 40, 120e127. Green, M. L. (1980). The formation and structure of milk protein gels. Food Chemistry, 6, 41e49. Guinee, T. P., Gorry, C. B., O'Callaghan, D. J., O'Kennedy, B. T., O'Brien, N., & Fenelon, M. A. (1997). The effects of composition and some processing treat- ments on the rennet coagulation properties of milk. Journal of Dairy Science, 50, 99e106. ISO. (2009). ISO Standard No. 11870: Milk and milk products e Determination of fat content e General guidance on the use of butyrometric methods. Geneva, Switzerland: International Organisation for Standardisation. ISO. (2014). ISO Standard No. 8968-1: Milk and milk products e Determinatioin of nitrogen content e Part 1: Kjeldahl principle and crude protein calculation. Geneva, Switzerland: International Organisation for Standardisation. Law, B. A., & Tamime, A. (2010). Technology of cheesemaking (2nd ed.). Malden, MA, USA: Blackwell. López, M. B., Lomholt, S. B., & Qvist, K. B. (1998). Rheological properties and cutting time of rennet gels. Effect of pH and enzyme concentration. International Dairy Journal, 8, 289e293. Lucey, J. A. (2002). Formation and physical properties of milk protein gels. Journal of Dairy Science, 85, 281e294. Lucey, J. A. (2011). Cheese. Rennet-induced coagulation of milk. Encyclopedia of dairy sciences. London, UK: Elsevier Applied Science. Mellema, M., Leermakers, F. A. M., & de Kruif, C. G. (1999). Molecular mechanism of the renneting process of casein micelles in skim milk, examined by viscosity and light-scattering experiments and simulated by model SCF calculations. Langmuir, 15, 6304e6313. Mellema, M., Walstra, P., van Opheusden, J. H. J., & van Vliet, T. (2002). Effects of structural rearrangements on the rheology of rennet-induced casein particle gels. Advances in Colloid and Interface Science, 98, 25e50. Nájera, A. I., De Renobales, M., & Barron, L. J. R. (2003). Effects of pH, temperature, CaCl 2 and enzyme concentrations on the rennet-clotting properties of milk: A multifactorial study. Food Chemistry, 80, 345e352. Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2013). The effect of calcium chloride addition on the microstructure and composition of Cheddar cheese. International Dairy Journal, 33, 135e141. Pandey, P. K., Ramaswamy, H. S., & St-Gelais, D. (2003). Effect of high pressure processing on rennet coagulation properties of milk. Innovative Food Science and Emerging Technologies, 4, 245e256. Perreault, V., Turcotte, O., Morin, P., Pouliot, Y., & Britten, M. (2016). Combined effect of denatured whey protein concentrate level and fat level in milk on rennet gel properties. International Dairy Journal, 55, 1e9. Sadlíková, I. Buňka, F., Budinský, P., Voldánová, B., Pavlínek, V., & Hoza, I. (2010). The effect of selected phosphate emulsifying salts on viscoelastic properties of processed cheese. Lebensmittel Wissenschaft und Technologie e Food Science and Technology, 43, 1220e1225. Schmidt, D. G. (1982). Association of casein and casein micelle structure. In P. F. Fox (Ed.), Developments in dairy chemistry (Vol. 1, pp. 61e86). London, UK: Applied Science Publishers. Weimer, B. C. (2007). Improving the flavour of cheese. Cambridge, UK: Woodhead Publishing.
utb.fulltext.sponsorship Financial support from Tomas Bata University in Zlín, Internal Grant Agencies (projects IGA/FT/2016/003 and IGA/FT/2017/004) and the National Agency for Agriculture Research, project No. QK1710156, is gratefully acknowledged.
utb.scopus.affiliation Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Nám. T. G. Masaryka 5555, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record