TBU Publications
Repository of TBU Publications

Characterization at 25°C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques

DSpace Repository

Show simple item record


dc.title Characterization at 25°C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques en
dc.contributor.author Mráček, Aleš
dc.contributor.author Gřundělová, Lenka
dc.contributor.author Minařík, Antonín
dc.contributor.author Veríssimo, Luis M.P.
dc.contributor.author Barros, Marisa Catarina Ferreira
dc.contributor.author Ribeiro, Ana C.F.
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2015
utb.relation.volume 20
utb.relation.issue 4
dc.citation.spage 5812
dc.citation.epage 5824
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/molecules20045812
dc.relation.uri http://www.mdpi.com/1420-3049/20/4/5812
dc.subject Diffusion coefficients en
dc.subject Huggins constant en
dc.subject Limiting viscosity number en
dc.subject Sodium hyaluronate en
dc.subject Taylor dispersion en
dc.subject Transport properties en
dc.description.abstract Mutual diffusion coefficients, D, were determined for aqueous solutions of sodium hyaluronate (NaHy) at 25°C and concentrations ranging from 0.00 to 1.00 g·dm-3 using the Taylor dispersion technique. From these experimental data, it was possible to estimate some parameters, such as the hydrodynamic radius R<inf>h</inf>, and the diffusion coefficient at infinitesimal concentration, D0, of hyaluronate ion, permitting us to have a better understanding of the structure of these systems of sodium hyaluronate in aqueous solutions. The additional viscosity measurements were done and Huggins constant, k<inf>H</inf>, and limiting viscosity number, [η], were computed for interaction NaHy/water and NaHy/NaHy determination. © 2015, MDPI AG. All rights reserved. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1004508
utb.identifier.obdid 43873387
utb.identifier.scopus 2-s2.0-84928623430
utb.identifier.wok 000354480700034
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2015-05-28T11:39:02Z
dc.date.available 2015-05-28T11:39:02Z
dc.description.sponsorship PTDC/AAC-CLI/118092/2010, FCT, Fuel Cycle Technologies
dc.description.sponsorship FCT [PTDC/AAC-CLI/118092/2010]; Coimbra Chemistry Centre from the FCT [Pest-OE/QUI/UI0313/2014]; Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; TBU in Zlin - specific university research and national budget of Czech Republic [IGA/FT/2013/015, IGA/FT/2014/018]; [SFRH/BD/72305/2010]
dc.rights Attribution-NonCommercial-NoDerivs 4.0 Unported
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mráček, Aleš
utb.contributor.internalauthor Gřundělová, Lenka
utb.contributor.internalauthor Minařík, Antonín
utb.fulltext.affiliation Aleš Mráček 1,2,*, Lenka Gřundělová 2, Antonín Minařík 1,2, Luís M. P. Veríssimo 3, Marisa C. F. Barros 3 and Ana C. F. Ribeiro 3,* 1 Department of Physics and Material Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G.Masaryka 275, Zlín 762 72, Czech Republic; E-Mail: minarik@ft.utb.cz 2 Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, Zlín 760 01, Czech Republic, E-Mail: grundelova@cps.utb.cz 3 Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal; E-Mails: luisve@gmail.com (L.M.P.V.); marisa.barros@gmail.com (M.C.F.B.) * Authors to whom correspondence should be addressed; E-Mails: mracek@ft.utb.cz (A.M.); anacfrib@ci.uc.pt (A.C.F.R.); Tel.: +420-733690668 (A.M.); +351-239-854460 (A.C.F.R.). Academic Editors: Vito Ferro and Trinidad Velasco-Torrijos
utb.fulltext.dates Received: 9 January 2015 / Accepted: 26 March 2015 / Published: 2 April 2015
utb.fulltext.references 1. Meyer, K.; Palmer, J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934, 107, 629–634. 2. Garg, H.G.; Hales, Ch.A. Chemistry and Biology of Hyaluronan, 1st ed.; Elsevier: Oxford, UK, 2004. 3. Gřundělová, L.; Mráček, A.; Kašpárková, V.; Minařík, A.; Smolka, P. The hyaluronan chain-chain interactions, conformations and coils size in solutions with quarternary salt. Carbohydr. Polym. 2013, 98, 1039–1044. 4. Verissimo, L.M.P.; Valada, T.I.C.; Sobral, A.J.F.N.; Azevedo, E.E.F.G.; Azevedo, M.L.G.; Ribeiro, A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014, 71, 14–18. 5. Scott, J.E. Supramolecular organisation of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992, 6, 2639–2645. 6. Scott, J.E.; Cummings, C.; Brass, A.; Chen, Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem. J. 1991, 274, 699–705. 7. Heatley, F.; Scott, J.E. A water molecule participates in the secondary structure of hyaluronan. Biochem. J. 1988, 172, 489–493. 8. Mráček, A.; Benešová, K.; Minařík, T.; Urban, P.; Lapčík, L. The diffusion process of Sodium Hyaluronate (Na-Ha) and Na-Ha-n-alkyl derivatives films swelling. J. Biomed. Mater. Res. 2007, 83A, 184–190. 9. Mráček, A.; Varhaníková, J.; Gřundělová, L.; Pokopcová, A.; Lehocký, M.; Velebný, V. The influence of Hofmeister series ions on Hyaluronan swelling and viscosity. Molecules 2008, 13, 1025–1034. 10. Mráček, A. The Measurement of Polymer Swelling Processes by an Interferometric Method and Evaluation of Diffusion Coefficients. Int. J. Mol. Sci. 2010, 11, 532–543. 11. Tyrrel, H.J.V. Diffusion and Heat Flow in Liquids, 1st ed.; Elsevier: London, UK, 1961. 12. Loh, W. Taylor dispersion technique for investigation of diffusion in liquids and its applications. Quím. Nova 1997, 20, 541–545. 13. Barthel, J.; Gores, J.H.J.; Lohr, C.M.; Seidl, J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996, 25, 921–935. 14. Callendar, R.; Leaist, D.G. Diffusion coefficients for binary, ternary, and polydisperse solutions from peak-width analysis of Taylor dispersion profiles. J. Solut. Chem. 2006, 35, 353–379. 15. Barros, M.C.F.; Ribeiro, A.C.F.; Esteso, M.A.; Lobo, V.M.M.; Leaist, D.G. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 degrees. J. Chem. Thermodyn. 2014, 72, 44–47. 16. Barros, M.C.F.; Ribeiro, A.C.F.; Valente, A.J.M.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Teijeiro, C.; Esteso, M.A. Mass transport techniques as a tool for a better understanding of the structure of l-dopa aqueous solutions. Int. J. Pharm. 2013, 447, 293–297. 17. Ribeiro, A.C.F.; Rodrigo, M.M.; Barros, M.C.F.; Verissimo, L.M.P.; Romero, C.; Valente, A.J.M.; Esteso, M.A. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014, 74, 133–137. 18. Ribeiro, A.C.F.; Lobo, V.M.M.; Leaist, D.G.; Natividade, J.J.S.; Veríssimo, L.P.; Barros, M.C.F.; Cabral, A.M.T.D.P.V. Binary diffusion coefficients for aqueous solutions of lactic acid. J. Solut. Chem. 2005, 34, 1009–1016. 19. Ribeiro, A.C.F.; Valente, A.J.M.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Lobo, V.M.M.; Burrows, H.D.; Esteso, M.A.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.J. Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin, 2-hydroxypropyl-α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin at temperatures from 298.15 K to 312.15 K. J. Chem. Eng. Data 2007, 52, 586–590. 20. Ribeiro, A.C.F.; Santos, C.I.A.V.A.; Valente, J.M.; Ascenso, O.S.; Lobo, V.M.M.; Burrows, H.D.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Teijeiro, C.; Esteso, M.A.J. Some transport properties of gamma-cyclodextrin aqueous solutions at 298.15 K and 310.15 K. J. Chem. Eng. Data 2008, 53, 755–759. 21. Ribeiro, A.C.F.; Fabela, I.; Sobral, A.J.F.N.; Verissimo, L.M.P.; Barros, M.C.F.; Melia Rodrigo, M.; Esteso, M.A. Diffusion of sodium alginate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014, 74, 263–268. 22. Rodrigo, M.M.; Valente, A.J.M.; Barros, M.C.F.; Verissimo L.M.P.; Romero, C.; Esteso, M.A.; Ribeiro, A.C.F. Mutual diffusion coefficients of l-lysine in aqueous solution. J. Chem. Thermodyn. 2014, 74, 227–230. 23. Robinson, R.A.; Stokes, R.H. Electrolyte Solutions, 2nd ed.; Dover Publications Inc.: New York, NY, USA, 2002. 24. Harned, H.S.; Owen, B.B The Physical Chemistry of Electrolytic Solutions, 3rd ed.; Reinhold Publ. Corp.: New York, NY, USA, 1967. 25. Bohdanecky, M.; Kovar J. Viscosity of Polymer Solutions, 1st ed.; Jenkins, J.D., Ed.; Elsevier: Amsterdam, The Netherland, 1982; Volume 3. 26. Scott, J.E.; Heatley, F. Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR study. Biochemistry 1999, 96, 4850–4855. 27. Šoltés, L.; Mendichi, R.; Lath, D.; Mach, M.; Bakoš, D. Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed. Chromatogr. 2002, 16, 459–462. 28. Ruckmani, K.; Shaikh, S.Z.; Khalil, P.; Muneera, M.S.; Thusleem, O.A. Determination of sodium hyaluronate in pharmaceutical formulations by HPLC-UV. J. Pharm. Anal. 2013, 3, 324–329. 29. Caspersen, M.B.; Roubroeks, J.P.; Qun, L.; Shan, H.; Foght, J.; RuiDong, Z.; Tømmeraas, K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohydr. Polym. 2014, 107, 25–30. 30. Lowry, K.M.; Beavers, E.M. Thermal stability of sodium hyaluronate in aqueous solution. J. Biomed. Mater. Res. 1994, 28, 1239–1244.
utb.fulltext.sponsorship Financial support from FCT PTDC/AAC-CLI/118092/2010 is gratefully acknowledged. MCFB is grateful for the SFRH/BD/72305/2010 grant. Financial support of the Coimbra Chemistry Centre from the FCT through project Pest-OE/QUI/UI0313/2014 is gratefully acknowledged. This article was also written with support of Operational Program Research and Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111). This article was also created with support of the internal grant of TBU in Zlín no. IGA/FT/2013/015 and IGA/FT/2014/018 funded from the resources of specific university research and national budget of Czech Republic.
utb.fulltext.projects FCT PTDC/AAC-CLI/118092/2010
utb.fulltext.projects SFRH/BD/72305/2010
utb.fulltext.projects Pest-OE/QUI/UI0313/2014
utb.fulltext.projects ERDF
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects IGA/FT/2013/015
utb.fulltext.projects IGA/FT/2014/018
Find Full text

Files in this item

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Unported Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 Unported