Publikace UTB
Repozitář publikační činnosti UTB

Phenolic content and antioxidant capacity in algal food products

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Phenolic content and antioxidant capacity in algal food products en
dc.contributor.author Machů, Ludmila
dc.contributor.author Mišurcová, Ladislava
dc.contributor.author Ambrožová Vávra, Jarmila
dc.contributor.author Orsavová, Jana
dc.contributor.author Mlček, Jiří
dc.contributor.author Sochor, Jiří
dc.contributor.author Juríková, Tünde
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2015
utb.relation.volume 20
utb.relation.issue 1
dc.citation.spage 1118
dc.citation.epage 1133
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/molecules20011118
dc.relation.uri http://www.mdpi.com/1420-3049/20/1/1118
dc.subject Algae en
dc.subject Antioxidant capacity of water soluble compounds en
dc.subject Folin-Ciocalteu en
dc.subject Phenols en
dc.subject Photochemiluminescence en
dc.description.abstract The study objective was to investigate total phenolic content using Folin-Ciocalteu's method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g-1 GAE; 7.53 μmol AA·g-1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols. en
utb.faculty Faculty of Technology
utb.faculty Faculty of Humanities
dc.identifier.uri http://hdl.handle.net/10563/1004153
utb.identifier.obdid 43873484
utb.identifier.scopus 2-s2.0-84921653043
utb.identifier.wok 000348319000067
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2015-02-17T15:12:59Z
dc.date.available 2015-02-17T15:12:59Z
dc.description.sponsorship internal grant agency of Tomas Bata University in Zlin [IGA/FT/2014/011]
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.contributor.internalauthor Machů, Ludmila
utb.contributor.internalauthor Mišurcová, Ladislava
utb.contributor.internalauthor Ambrožová Vávra, Jarmila
utb.contributor.internalauthor Orsavová, Jana
utb.contributor.internalauthor Mlček, Jiří
utb.fulltext.affiliation Ludmila Machu 1, Ladislava Misurcova 1,*, Jarmila Vavra Ambrozova 1, Jana Orsavova 2, Jiri Mlcek 1, Jiri Sochor 3 and Tunde Jurikova 4 1 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin CZ-760 01, Czech Republic; E-Mails: lmachu@ft.utb.cz (L.M.); ambrozova@ft.utb.cz (J.V.A.); mlcek@ft.utb.cz (J.M.) 2 Language Centre, Faculty of Humanities, Tomas Bata University in Zlin, Mostní 5139, Zlin CZ-760 01, Czech Republic; E-Mail: orsavova@fhs.utb.cz 3 Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, Lednice CZ-691 44, Czech Republic E-Mail: sochor.jirik@seznam.cz 4 Department of Natural and Informatics Sciences, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovakia; E-Mail: tjurikova@ukf.sk * Author to whom correspondence should be addressed; E-Mail: misurcova@ft.utb.cz; Tel.: +420-576-031-592; Fax: +420-577-210-172. Academic Editor: Derek J. McPhee
utb.fulltext.dates Received: 13 November 2014 / Accepted: 6 January 2015 / Published: 12 January 2015
utb.fulltext.references 1. Mišurcová, L. Chemical composition of seaweeds. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; Kim, S.-K., Ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 173–192. 2. Ambrozova, J.V.; Misurcova, L.; Vicha, R.; Machu, L.; Samek, D.; Baron, M.; Mlcek, J.; Sochor, J.; Jurikova, T. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules 2014, 19, 2344–2360. 3. Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers—A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. 4. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. 5. Zern, T.L.; Fernandez, M.L. Cardioprotective effects of dietary polyphenols. J. Nutr. 2005, 135, 2291–2294. 6. Li, Y.X.; Wijesekara, I.; Li, Y.; Kim, S.K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011, 46, 2219–2224. 7. Thomas, N.V.; Kim, S.K. Potential pharmacological applications of polyphenolic derivates from marine brown algae. Environ. Toxicol. Pharmacol. 2011, 32, 325–335. 8. Popov, I.; Lewin, G. Antioxidative homeostasis: Characterization by means of chemiluminescent technique. Methods Enzymol. 1999, 300, 437–456. 9. Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxiadants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. 10. Yuan, Y.V.; Walsh, N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 2006, 44, 1144–1150. 11. Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Pulido, R.; Saura-Calixto, F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001, 81, 530–534. 12. Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.A.A.; Moreira, W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol. 2006, 97, 2402–2406. 13. López, A.; Rico, M.; Rivero, A.; Suárez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. 14. Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 2013, 51, 289–298. 15. Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. 16. Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. 17. Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. 18. Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003, 51, 7292–7295. 19. Kim, S.M.; Kang, K.; Jeon, J.S.; Jho, E.H.; Kim, C.Y.; Nho, C.W.; Um, B.H. Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effects against oxidative stress induced by tert-butyl hyperoxide. Appl. Biochem. Biotechnol. 2011, 165, 1296–1307. 20. Heo, S.J.; Cha, S.H.; Lee, K.W.; Cho, S.K.; Jeon, Y.J. Antioxidant activities of chlorophyta and phaeophyta from Jeju Island. Algae 2005, 20, 251–260. 21. Zhang, W.W.; Duan, X.J.; Huang, H.L.; Zhang, Y.; Wang, B.G. Evaluation of 28 marine algae from the Qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J. Appl. Phycol. 2007, 19, 97–108. 22. Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 2005, 91, 485–494. 23. Heo, S.J.; Cha, S.H.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of red algae from Jeju Island. Algae 2006, 21, 149–156. 24. Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. 25. Liu, J.G.; Hou, C.W.; Lee, S.Y.; Chuang, Y.; Lin, C.C. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochem. 2011, 46, 1405–1410. 26. Tomás-Barberán, F.A.; Clifford, M.N. Flavonones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1073–1080. 27. Yoshie, Y.; Wang, W.; Petillo, D.; Suzuki, T. Distribution of catechins in Japanese seaweeds. Fish. Sci. 2000, 66, 998–1000. 28. Rodríguez-Bernaldo de Quirós, A.; Lage-Yusty, M.A.; López-Hernández, J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010, 121, 634–638. 29. Onofrejová, L.; Vašíčková, J.; Klejdus, B.; Stratil, P.; Mišurcová, L.; Kráčmar, S.; Kopecký, J.; Vacek, J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal. 2010, 51, 464–470. 30. Kranl, K.; Schlesier, K.; Bitsch, R.; Hermann, H.; Rohe, M.; Böhm, V. Comparing antioxidative food additives and secondary plant products—Use of different assays. Food Chem. 2005, 93, 171–175. 31. Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007, 102, 1352–1356. 32. Chua, M.T.; Tung, Y.T.; Chang, S.T. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour. Technol. 2008, 99, 1918–1925. 33. Punithavathi, V.R.; Stanely Mainzen Prince, P.; Kumar, M.R.; Selvakumari, C.J. Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic Wistar rats. J. Biochem. Mol. Toxicol. 2011, 25, 68–76. 34. Peungvicha, P.; Temsiririrkkul, R.; Prasain, J.K.; Tezuka, Y.; Kadota, S.; Thirawarapan, S.S.; Watanabe, H. 4-Hydroxybeozoic acid: A hypoglycemic constituent of aqueous extract of Pandanus odorus root. J. Ethnopharmacol. 1998, 62, 79–84. 35. Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011, 49, 3281–3286. 36. Babich, H.; Zuckerbraun, H.L.; Weinerman, S.M. In vitro cytotoxicity of (–)-catechin gallate, a minor polyphenol in green tea. Toxicol. Lett. 2007, 171, 171–180. 37. Terao, J.; Piskula, M.; Yao, Q. Protective Effect of Epicatechin, Epicatechin Gallate, and Quercetin on Lipid Peroxidation in Phospholipid Bilayers. Arch. Biochem. Biophys. 1994, 308, 278–284. 38. Suganuma, M.; Okabe, S.; Oniyama, M.; Tada, Y.; Ito, H.; Fujiki, H. Wide distribution of [3H](–)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998, 19, 1771–1776. 39. Singh, B.N.; Shankar, S.; Srivastava, R. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanism, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. 40. Rodríguez-Bernaldo de Quirós, A.; Frecha-Ferreiro, S.; Vidal-Pérez, A.M.; López-Hernández, J. Antioxidant compounds in edible brown seaweeds. Eur. Food Res. Technol. 2010, 231, 495–498.
utb.fulltext.sponsorship This study was funded by internal grant agency of Tomas Bata University in Zlin, project No. IGA/FT/2014/011.
utb.fulltext.projects IGA/FT/2014/011
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported