TBU Publications
Repository of TBU Publications

Remarks on Grassmannian symmetric spaces

DSpace Repository

Show simple item record


dc.title Remarks on Grassmannian symmetric spaces en
dc.contributor.author Zalabová, Lenka
dc.contributor.author Žádník, Vojtěch
dc.relation.ispartof Archivum Mathematicum
dc.identifier.issn 0044-8753 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2008
utb.relation.volume 44
utb.relation.issue 5
dc.citation.spage 569
dc.citation.epage 585
dc.type article
dc.language.iso en
dc.publisher Masarykova univerzita, Přírodovědecká fakulta cs
dc.relation.uri http://www.maths.soton.ac.uk/EMIS/journals/AM/08-5/index.html
dc.subject Almost Grassmannian structures en
dc.subject Parabolic geometries en
dc.subject Symmetric spaces en
dc.subject Weyl structures en
dc.description.abstract The classical concept of affine locally symmetric spaces allows a generalization for various geometric structures on a smooth manifold. We remind the notion of symmetry for parabolic geometries and we summarize the known facts for |l|-graded parabolic geometries and for almost Grassmannian structures, in particular. As an application of two general constructions with parabolic geometries, we present an example of non-fat Grassmannian symmetric space. Next we observe there is a distinguished torsion-free affine connection preserving the Grassmannian structure so that, with respect to this connection, the Grassmannian symmetric space is an affine symmetric space in the classical sense. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003133
utb.identifier.obdid 43869399
utb.identifier.scopus 2-s2.0-77951207921
utb.source j-scopus
dc.date.accessioned 2013-02-24T06:51:43Z
dc.date.available 2013-02-24T06:51:43Z
dc.rights Attribution-NonCommercial-NoDerivs 4.0 Unported
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Zalabová, Lenka
Find Full text

Files in this item

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Unported Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 Unported