Publikace UTB
Repozitář publikační činnosti UTB

Effect of Surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Effect of Surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites en
dc.contributor.author Vilčáková, Jarmila
dc.contributor.author Moučka, Robert
dc.contributor.author Svoboda (FT), Petr
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Kazantseva, Natalia E.
dc.contributor.author Hřibová, Martina
dc.contributor.author Mičušík, Matej
dc.contributor.author Omastová, Mária
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2012
utb.relation.volume 17
utb.relation.issue 11
dc.citation.spage 13157
dc.citation.epage 13174
dc.type article
dc.language.iso en
dc.publisher MDPI AG en
dc.identifier.doi 10.3390/molecules171113157
dc.relation.uri http://www.mdpi.com/1420-3049/17/11/13157
dc.subject Complex permittivity en
dc.subject Electrical conductivity en
dc.subject Modification of carbon nanotubes by ionic surfactants en
dc.subject Multi-wall carbon nanotubes en
dc.subject Percolation threshold en
dc.subject Silicone based composites en
dc.subject Thermal conductivity en
dc.description.abstract The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT-DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity. © 2012 by the authors. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1003059
utb.identifier.rivid RIV/70883521:28110/12:43868121!RIV13-MSM-28110___
utb.identifier.rivid RIV/70883521:28610/12:43868121!RIV13-MSM-28610___
utb.identifier.obdid 43868214
utb.identifier.scopus 2-s2.0-84870183949
utb.identifier.wok 000311428400052
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2012-12-18T08:35:41Z
dc.date.available 2012-12-18T08:35:41Z
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Vilčáková, Jarmila
utb.contributor.internalauthor Moučka, Robert
utb.contributor.internalauthor Svoboda (FT), Petr
utb.contributor.internalauthor Kazantseva, Natalia E.
utb.contributor.internalauthor Hřibová, Martina
utb.fulltext.affiliation Jarmila Vilčáková 1,2,*, Robert Moučka 1,2, Petr Svoboda 1,2, Markéta Ilčíková 3, Natalia Kazantseva 1,2, Martina Hřibová 1, Matej Mičušík 3 and Mária Omastová 3 1 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlín, Zlín 760 01, Czech Republic 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nad Ovcirnou, Zlín 760 01, Czech Republic 3 Polymer Institute, Slovak Academy of Sciences, Bratislava 845 41, Slovakia * Author to whom correspondence should be addressed; E-Mail: vilcakova@ft.utb.cz; Tel.: +420-576-038-113; Fax: +420-576-031-444.
utb.fulltext.dates Received: 24 September 2012 in revised form: 25 October 2012 Accepted: 29 October 2012 Published: 5 November 2012
utb.fulltext.references 1. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. 2. Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645. 3. Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. 4. Mamunya, Y.; Boudenne, A.; Lebovka, N.; Ibos, L.; Candau, Y.; Lisunova, M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 2008, 68, 1981–1988. 5. Dubnikova, I.; Kuvardina, E.; Krasheninnikov, V.; Lomakin, S.; Tchmutin, I.; Kuznetsov, S. The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J. Appl. Polym. Sci. 2010, 117, 259–272. 6. Huang, Y.Y.; Terentjev, E.M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 2012, 4, 275–295. 7. Zhang, K.; Park, B.J.; Fang, F.F.; Choi, H.J. Sonochemical Preparation of Polymer Nanocomposites. Molecules 2009, 14, 2095–2110. 8. Micusik, M.; Omastova, M.; Pionteck, J.; Pandis, C.; Logakis, E.; Pissis, P. Influence of surface treatment of multiwall carbon nanotubes on the properties of polypropylene/carbon nanotubes nanocomposites. Polym. Advan. Technol. 2011, 22, 38–47. 9. Cui, S.; Canet, R.; Derre, A.; Couzi, M.; Delhaes, P. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon 2003, 41, 797–809. 10. Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. 11. Sandler, J.K.W.; Kirk, J.E.; Kinloch, I.A.; Shaffer, M.S.P.; Windle, A.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. 12. Guadagno, L.; de Vivo, B.; di Bartolomeo, A.; Lamberti, P.; Sorrentino, A.; Tucci, V.; Vertuccio, L.; Vittoria, V. Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 2011, 49, 1919–1930. 13. Potschke, P.; Abdel-Goad, M.; Alig, I.; Dudkin, S.; Lellinger, D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 2004, 45, 8863–8870. 14. Slobodian, P.; Lengalova, A.; Saha, P. Poly(methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: Composites electrical percolation threshold. J. Reinf. Plast. Compos. 2007, 26, 1705–1712. 15. McNally, T.; Potschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S.E.J.; Brennan, G.P.; Bein, D.; Lemoine, P.; Quinn, J.P. Polyethylene multiwalled carbon nanotube composites. Polymer 2005, 46, 8222–8232. 16. Micusik, M.; Omastova, M.; Krupa, I.; Prokes, J.; Pissis, P.; Logakis, E.; Pandis, C.; Potschke, P.; Pionteck, J. A Comparative Study on the Electrical and Mechanical Behaviour of Multi-Walled Carbon Nanotube Composites Prepared by Diluting a Masterbatch With Various Types of Polypropylenes. J. Appl. Polym. Sci. 2009, 113, 2536–2551. 17. Vilčáková, J.; Paligová, M.; Omastová, M.; Sáha, P.; Quadrat, O. “Switching effect” in pressure deformation of silicone rubber/polypyrrole composites. Synth. Met. 2004, 146, 121–126. 18. Vast, L.; Mekhalif, Z.; Fonseca, A.; Nagy, J.B.; Delhalle, J. Preparation and electrical characterization of a silicone elastomer composite charged with multi-wall carbon nanotubes functionalized with 7-octenyltrichlorosilane. Compos. Sci. Technol. 2007, 67, 880–889. 19. Chen, G.X.; Kim, H.S.; Park, B.H.; Yoon, J.S. Highly insulating silicone composites with a high carbon nanotube content. Carbon 2006, 44, 3373–3375. 20. Chua, T.P.; Mariatti, M.; Azizan, A.; Rashid, A.A. Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites. Compos. Sci. Technol. 2010, 70, 671–677. 21. Khosla, A.; Gray, B.L. Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer. Mater. Lett. 2009, 63, 1203–1206. 22. Hwang, J.; Jang, J.; Hong, K.; Kim, K.N.; Han, J.H.; Shin, K.; Park, C.E. Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 2011, 49, 106–110. 23. Ajayan, P.M.; Tour, J.M. Materials science: Nanotube composites. Nature 2007, 447, 1066–1068. 24. Han, Z.D.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. 25. Omastova, M.; Micusik, M.; Fedorko, P.; Chehimi, M.M.; Pionteck, J. Effect of Surface Modification of Multiwall Carbon Nanotubes on their Electrical and Surface Properties. In Advanced Materials Forum V, Pt 1 and 2; Rosa, L.G., Margarido, F., Eds.; Trans. Tech. Publications Ltd.: Stafa-Zurich, Switzerland, 2010; Volume 636–637, pp. 676–681. 26. Vaisman, L.; Marom, G.; Wagner, H.D. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv. Funct. Mater. 2006, 16, 357–363. 27. Shenogina, N.; Shenogin, S.; Xue, L.; Keblinski, P. On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 2005, 87, doi:10.1063/1.2056591. 28. Goncharenko, A.V.; Lozovski, V.Z.; Venger, E.F. Lichtenecker’s equation: Applicability and limitations. Opt. Commun. 2000, 174, 19–32. 29. Nan, C.W.; Liu, G.; Lin, Y.H.; Li, M. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2004, 85, 3549–3551. 30. Gebhart, B. Composite Transport Regions. In Heat Conduction and Mass Diffusion; McGraw-Hill: New York, NY, USA & London, UK, 1993; pp. 400–456. 31. Konyushenko, E.N.; Stejskal, J.; Trchova, M.; Hradil, J.; Kovarova, J.; Prokes, J.; Cieslar, M.; Hwang, J.Y.; Chen, K.H.; Sapurina, I. Multi-wall carbon nanotubes coated with polyaniline. Polymer 2006, 47, 5715–5723. 32. Van der Pauw, L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 1958, 13, 1–9. 33. Tye, R.P. Thermal Conductivity; Academic Press: London, UK & New York, NY, USA, 1969; Volume 2, pp. 35–54. 34. Svoboda, P.; Theravalappil, R.; Poongavalappil, S.; Vilcakova, J.; Svobodova, D.; Mokrejs, P.; Blaha, A. A study on electrical and thermal conductivities of ethylene-octene copolymer/expandable graphite composites. Polym. Eng. Sci. 2012, 52, 1241–1249.
utb.fulltext.sponsorship The research was created with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111). The research/article was supported with support of Operational Program Education for Competitiveness co-funded by the European Social Fund (ESF) and national budget of Czech Republic, within the framework of project Advanced Theoretical and Experimental Studies of Polymer Systems (reg. number: CZ.1.07/2.3.00/20.0104) and by project VEGA 2/0064/10 (Slovak Republic).
utb.fulltext.projects CZ.1.05/2.1.00/03.0111
utb.fulltext.projects CZ.1.07/2.3.00/20.0104
utb.fulltext.projects VEGA 2/0064/10
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported