Publikace UTB
Repozitář publikační činnosti UTB

Joint effects of long-chain branching and specific nucleation on morphology and thermal properties of polypropylene blends

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Joint effects of long-chain branching and specific nucleation on morphology and thermal properties of polypropylene blends en
dc.contributor.author Gajzlerová, Lenka
dc.contributor.author Navrátilová, Jana
dc.contributor.author Ryzí, Adriana
dc.contributor.author Slaběňáková, Tereza
dc.contributor.author Čermák, Roman
dc.relation.ispartof Express Polymer Letters
dc.identifier.issn 1788-618X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2020
utb.relation.volume 14
utb.relation.issue 10
dc.citation.spage 952
dc.citation.epage 961
dc.type article
dc.language.iso en
dc.publisher BME-PT and GTE
dc.identifier.doi 10.3144/expresspolymlett.2020.77
dc.relation.uri https://www.expresspolymlett.com/letolt.php?file=EPL-0010572&mi=c
dc.subject polymer blends and alloys en
dc.subject polypropylene en
dc.subject long-chain branching en
dc.subject specific nucleation en
dc.subject thermal properties en
dc.description.abstract The influence of long-chain branching and specific β-nucleation on polymorphic composition, melting and crystallization, and morphology of polypropylene blends were investigated by wide-angle X-ray scattering, differential scanning calorimetry, and scanning electron microscopy. Linear polypropylene and long-chain branched polypropylene were used for the preparation of blends in various proportions. N,N′-dicyclohexylnaphthalene-2,6-dicarboxamide was introduced (0 or 0.03 wt%) as a β-specific nucleating agent into prepared blends. It was found that LCB-PP strongly induces γ-phase formation in the blends and suppresses the nucleation activity of a β-specific nucleating agent. Blends containing a predominant amount of α-and γ-phases showed higher thermodynamic stability within melting, as compared to the samples rich in β-phase. During crystallization, LCB-PP in the blends increases nucleation density by self-seeding effect, manifesting itself in the shift of crystallization temperature. β-phase in the blends is distinctly separated in spherulites, while α-and γ-phases coexist on the lamellae level. © 2020, BME-PT and GTE. All rights reserved. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1009833
utb.identifier.obdid 43881626
utb.identifier.scopus 2-s2.0-85088902742
utb.identifier.wok 000566773200005
utb.source j-scopus
dc.date.accessioned 2020-08-13T13:10:36Z
dc.date.available 2020-08-13T13:10:36Z
dc.description.sponsorship Operational Program for Research, Development, and Education; European UnionEuropean Union (EU) [CZ.02.2.69/0.0/0.0/16_027/0008464]; [IGA/CPS/2018/006]; [IGA/CPS/2019/002]
utb.contributor.internalauthor Gajzlerová, Lenka
utb.contributor.internalauthor Navrátilová, Jana
utb.contributor.internalauthor Ryzí, Adriana
utb.contributor.internalauthor Slaběňáková, Tereza
utb.contributor.internalauthor Čermák, Roman
utb.fulltext.affiliation L. Gajzlerova*, J. Navratilova, A. Ryzi, T. Slabenakova, R. Cermak Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, 760 01 Zlin, Czech Republic * Corresponding author, e-mail: lgajzlerova@utb.cz
utb.fulltext.dates Received 6 January 2020; accepted in revised form 22 March 2020
utb.fulltext.references [1] Nam G. J., Yoo J. H., Lee J. W.: Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. Journal of Applied Polymer Science, 96, 1793–1800 (2005). https://doi.org/10.1002/app.21619 [2] Wang K., Wang S., Wu F., Pang Y., Liu W., Zhai W., Zheng W.: A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach. Journal of Materials Science, 51, 2705–2715 (2016). https://doi.org/10.1007/s10853-015-9584-x [3] Gotsis A. D., Zeevenhoven B. L., Hogt A. H.: The effect of long chain branching on the processability of poly - propylene in thermoforming. Polymer Engineering and Science, 44, 973–982 (2004). https://doi.org/10.1002/pen.20089 [4] McCallum T. J., Kontopoulou M., Park C. B., Muliawan E. B., Hatzikiriakos S. G.: The rheological and physical properties of linear and branched polypropylene blends. Polymer Engineering and Science, 47, 1133-1140 (2007). https://doi.org/10.1002/pen.20798 [5] Weng W., Hu W., Dekmerzian A. H., Ruff C. J.: Long chain branched isotactic polypropylene. Macromolecules, 35, 3838–3843 (2002). https://doi.org/10.1021/ma020050j [6] Langston J. A., Colby R. H., Chung T. C. M., Shimizu F., Suzuki T., Aoki M.: Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules, 40, 2712–2720 (2007). https://doi.org/10.1021/ma062111+ [7] Krause B., Stephan M., Volkland S., Voigt D., Häußler L., Dorschner H.: Long-chain branching of polypropylene by electron-beam irradiation in the molten state. Journal of Applied Polymer Science, 99, 260–265 (2006). https://doi.org/10.1002/app.22471 [8] Lugăo A. B., Otaguro H., Parra D. F., Yoshiga A., Lima L. F. C. P., Artel B. W. H., Liberman S.: Review on the production process and uses of controlled rheology poly - propylene – Gamma radiation versus electron beam processing. Radiation Physics and Chemistry, 76, 1688–1690 (2007). https://doi.org/10.1016/j.radphyschem.2007.01.015 [9] Graebling D.: Synthesis of branched polypropylene by a reactive extrusion process. Macromolecules, 35, 4602–4610 (2002). https://doi.org/10.1021/ma0109469 [10] Mogilicharla A., Majumdar S., Mitra K.: Multiobjective optimization of long-chain branched propylene polymerization. Polymer Engineering and Science, 55, 1067–1076 (2015). https://doi.org/10.1002/pen.23977 [11] Naguib H. E., Park C. B., Panzer U., Reichelt N.: Strategies for achieving ultra low-density polypropylene foams. Polymer Engineering and Science, 42, 1481–1492 (2002). https://doi.org/10.1002/pen.11045 [12] Reichelt N., Stadlbauer M., Folland R., Park C. B., Wang J.: PP-blends with tailored foamability and mechanical properties. Cellular Polymers, 22, 315–328 (2003). https://doi.org/10.1177/026248930302200503 [13] Padden F. J., Keith H. D.: Spherulitic crystallization in polypropylene. Journal of Applied Physics, 30, 1479–1484 (1959). https://doi.org/10.1063/1.1734985 [14] Natta G., Corradini P.: Structure and properties of isotactic polypropylene. Nuovo Cimento, 15, 40–51 (1960). https://doi.org/10.1007/BF02731859 [15] Corradini P., Petraccone V., de Rosa C., Guerra G.: On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules, 19, 2699–2703 (1986). https://doi.org/10.1021/ma00165a006 [16] Gahleitner M., Mileva D., Androsch R., Gloger D., Tranchida D., Sandholzer M., Doshev P.: Crystallinitybased product design: Utilizing the polymorphism of isotactic PP homo- and copolymers. International Polymer Processing, 31, 618–627 (2016). https://doi.org/10.3139/217.3242 [17] Chvatalová L., Navratilová J., Čermák R., Raab M., Obadal M.: Joint effects of molecular structure and processing history on specific nucleation of isotactic poly - propylene. Macromolecules, 42, 7413–7417 (2009). https://doi.org/10.1021/ma9005878 [18] Varga J.: β-modification of isotactic polypropylene: Preparation, structure, processing, and application. Journal of Macromolecular Science Part B: Physics, 41, 1121–1171 (2002). https://doi.org/10.1081/MB-120013089 [19] Turner Jones A., Aizlewood J. M., Beckett D. R.: Crystalline forms of isotactic polypropylene. Macromolecular Chemistry and Physics, 75, 134–158 (1964). https://doi.org/10.1002/macp.1964.020750113 [20] Varga J.: Crystallization, melting and supermolecular structure of isotactic polypropylene. in ‘Polypropylene structure, blends and composites Vol. 1, Structure and morphology’ (ed.: Karger-Kocsis J.) Chapman and Hall, London, 56–115 (1995). [21] Varga J.: Supermolecular structure of isotactic poly - propylene. Journal of Materials Science, 27, 2557–2579 (1992). https://doi.org/10.1007/BF00540671 [22] Karger-Kocsis J., Varga J.: Effects of β-α transformation on the static and dynamic tensile behavior of isotactic polypropylene. Journal of Applied Polymer Science, 62, 291–300 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961010)62:2<291
utb.fulltext.sponsorship This article was written with the support of Operational Program for Research, Development, and Education, co-funded by the European Union, within the framework of the project ‘International Mobility of Researchers of TBU in Zlín’ (Reg. number: CZ.02.2.69/0.0/0.0/16_027/0008464) and by the internal grant agency of the projects IGA/CPS/2018/006 and IGA/CPS/2019/002. The authors kindly acknowledge to Jirina Dohnalova for her help with sample preparation and testing.
utb.wos.affiliation [Gajzlerova, L.; Navratilova, J.; Ryzi, A.; Slabenakova, T.; Cermak, R.] Tomas Bata Univ Zlin, Fac Technol, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Technology, Vavreckova 275, Zlin, 760 01, Czech Republic
utb.fulltext.projects CZ.02.2.69/0.0/0.0/16_027/0008464
utb.fulltext.projects IGA/CPS/2018/006
utb.fulltext.projects IGA/CPS/2019/002
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam