TBU Publications
Repository of TBU Publications

Light-induced actuation of poly(dimethylsiloxane) filled with Graphene oxide grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate)

DSpace Repository

Show simple item record

dc.title Light-induced actuation of poly(dimethylsiloxane) filled with Graphene oxide grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate) en
dc.contributor.author Osička, Josef
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Münster, Lukáš
dc.contributor.author Bažant, Pavel
dc.contributor.author Špitalský, Zdenko
dc.contributor.author Mosnáček, Jaroslav
dc.relation.ispartof Polymers
dc.identifier.issn 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 10
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/polym10101059
dc.relation.uri https://www.mdpi.com/2073-4360/10/10/1059
dc.subject Dielectrics en
dc.subject Dynamic mechanical analysis en
dc.subject Graphene oxide en
dc.subject Light-induced actuation en
dc.subject Reduction en
dc.subject SI-ATRP en
dc.description.abstract This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability. The GO surface-modification with poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains was confirmed by transmission electron microscopy and thermogravimetric analysis, with an on-line monitoring of gasses using FTIR. The improved compatibility was elucidated using contact angle and dielectric properties measurements. The PHEMATMS shell was investigated using gel permeation chromatography and nuclear magnetic resonance. The improved electric conductivity was measured using the four-point probe method and by Raman spectroscopy. The very important mechanical properties were elucidated using dynamic mechanical analysis, and with the help of thermo-mechanic analysis for the light-induced actuation. The excellent actuation capabilities observed, with changes in the length of around 0.8% at 10% pre-strain, are very promising from the point of view of applications. © 2018 by the authors. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008223
utb.identifier.obdid 43879677
utb.identifier.scopus 2-s2.0-85053858216
utb.identifier.wok 000448662400014
utb.source j-scopus
dc.date.accessioned 2018-10-18T10:31:45Z
dc.date.available 2018-10-18T10:31:45Z
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Osička, Josef
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Münster, Lukáš
utb.contributor.internalauthor Bažant, Pavel
utb.fulltext.affiliation Josef Osicka 1 https://orcid.org/0000-0002-4909-9350 , Miroslav Mrlik 1, * https://orcid.org/0000-0001-6203-6795 , Markéta Ilčíková 2 , Lukas Munster 1 , Pavel Bazant 1 , Zdenko Špitalský 2 and Jaroslav Mosnáček 2,3, * 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic; osicka@utb.cz (J.O.); munster@utb.cz (L.M.); bazant@utb.cz (P.B.) 2 Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; marketa.ilcikova@savba.sk (M.I.); upolspiz@savba.sk (Z.Š.) 3 Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia * Correspondence: mrlik@utb.cz (M.M.); jaroslav.mosnacek@savba.sk (J.M.); Tel.: +420-576-038-027 (M.M.); +421-2-3229-4353 (J.M.)
utb.fulltext.dates Received: 28 August 2018; Accepted: 21 September 2018; Published: 24 September 2018
utb.fulltext.references 1. Yetisen, A.K.; Martinez-Hurtado, J.L.; Uenal, B.; Khademhosseini, A.; Butt, H. Wearables in medicine. Adv. Mater. 2018, 30, 1706910. [CrossRef] [PubMed] 2. Bisoyi, H.K.; Urbas, A.M.; Li, Q. Soft materials driven by photothermal effect and their applications. Adv. Opt. Mater. 2018, 6, 21. [CrossRef] 3. He, K.; Wen, Q.K.; Wang, C.W.; Wang, B.X.; Yu, S.S.; Hao, C.C.; Chen, K.Z. A facile synthesis of hierarchical flower-like TiO 2 wrapped with MoS 2 sheets nanostructure for enhanced electrorheological activity. Chem. Eng. J. 2018, 349, 416–427. [CrossRef] 4. Stejskal, J.; Bober, P.; Trchova, M.; Horsky, J.; Walterova, Z.; Filippov, S.K.; Plachy, T.; Mrlik, M. Oxidation of pyrrole with p-benzoquinone to semiconducting products and their application in electrorheology. New J. Chem. 2018, 42, 10167–10176. [CrossRef] 5. Hu, T.; Xuan, S.H.; Ding, L.; Gong, X.L. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 2018, 156, 528–537. [CrossRef] 6. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Munster, L.; Pavlinek, V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 2017, 50, 2189–2200. [CrossRef] 7. Zhang, W.Z.; Wang, L.F.; Sun, K.; Luo, T.; Yu, Z.Z.; Pan, K. Graphene-based janus film with improved sensitive response capacity for smart actuators. Sens. Actuators B Chem. 2018, 268, 421–429. [CrossRef] 8. Wang, T.P.; Li, M.T.; Zhang, H.; Sun, Y.Y.; Dong, B. A multi- responsive bidirectional bending actuator based on polypyrrole and agar nanocomposites. J. Mater. Chem. C 2018, 6, 6416–6422. [CrossRef] 9. Zahoranova, A.; Mrlik, M.; Tomanova, K.; Kronek, J.; Luxenhofer, R. Aba and bab triblock copolymers based on 2-methyl-2-oxazoline and 2-n-propyl-2-oxazoline: Synthesis and thermoresponsive behavior in water. Macromol. Chem. Phys. 2017, 218, 12. [CrossRef] 10. Shah, A.; Malik, M.S.; Khan, G.S.; Nosheen, E.; Iftikhar, F.J.; Khan, F.A.; Shukla, S.S.; Akhter, M.S.; Kraatz, H.B.; Aminabhavi, T.M. Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chem. Eng. J. 2018, 353, 559–583. [CrossRef] 11. Li, M.; Wang, Y.; Chen, A.P.; Naidu, A.; Napier, B.S.; Li, W.Y.; Rodriguez, C.L.; Crooker, S.A.; Omenetto, F.G. Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 8119–8124. [CrossRef] [PubMed] 12. Toshchevikov, V.; Petrova, T.; Saphiannikova, M. Kinetics of ordering and deformation in photosensitive azobenzene lc networks. Polymers 2018, 10, 20. [CrossRef] 13. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Slouf, M.; Zhigunov, A.; Koynov, K.; Mosnacek, J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014, 3, 999–1003. [CrossRef] 14. Hu, Y.; Wu, G.; Lan, T.; Zhao, J.J.; Liu, Y.; Chen, W. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 2015, 27, 7867–7873. [CrossRef] [PubMed] 15. Yang, Y.K.; Zhan, W.J.; Peng, R.G.; He, C.G.; Pang, X.C.; Shi, D.; Jiang, T.; Lin, Z.Q. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 2015, 27, 6376–6381. [CrossRef] [PubMed] 16. Pennacchio, F.A.; Fedele, C.; De Martino, S.; Cavalli, S.; Vecchione, R.; Netti, P.A. Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system. Acs Appl. Mater. Interfaces 2018, 10, 91–97. [CrossRef] [PubMed] 17. Li, C.; Yun, J.H.; Kim, H.; Cho, M. Light propagation and photoactuation in densely cross-linked azobenzene-functionalized liquid-crystalline polymers: Contribution of host and concerted isomerism. Macromolecules 2016, 49, 6012–6020. [CrossRef] 18. Osicka, J.; Ilcikova, M.; Mrlik, M.; Minarik, A.; Pavlinek, V.; Mosnacek, J. The impact of polymer grafting from a graphene oxide surface on its compatibility with a pdms matrix and the light-induced actuation of the composites. Polymers 2017, 9, 14. [CrossRef] 19. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Doroshenko, M.; Koynov, K.; Danko, M.; Mosnacek, J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer 2015, 72, 368–377. [CrossRef] 20. Loomis, J.; King, B.; Burkhead, T.; Xu, P.; Bessler, N.; Terentjev, E.; Panchapakesan, B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 2012, 23, 10. [CrossRef] [PubMed] 21. Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115–120. [CrossRef] [PubMed] 22. Afzal, A.; Kausar, A.; Siddiq, M. Review highlighting physical prospects of styrenic polymer and styrenic block copolymer reinforced with carbon nanotube. Polym. Plast. Technol. Eng. 2017, 56, 573–593. [CrossRef] 23. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Chorvat, D.; Krupa, I.; Slouf, M.; Koynov, K.; Mosnacek, J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer 2014, 55, 211–218. [CrossRef] 24. Feng, Y.Y.; Qin, M.M.; Guo, H.Q.; Yoshino, K.; Feng, W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. Acs Appl. Mater. Interfaces 2013, 5, 10882–10888. [CrossRef] [PubMed] 25. Czanikova, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasak, P.; Pavlova, E.; Racko, D.; Chodak, I.; Omastova, M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuators B 2013, 186, 701–710. [CrossRef] 26. Mrlik, M.; Ilcikova, M.; Sedlacik, M.; Mosnacek, J.; Peer, P.; Filip, P. Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field. Colloid Polym. Sci. 2014, 292, 2137–2143. [CrossRef] 27. Osicka, J.; Mrlik, M.; Ilcikova, M.; Hanulikova, B.; Urbanek, P.; Sedlacik, M.; Mosnacek, J. Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly (glycidyl methacrylate) and pdms elastomer: Effect of compatibility and graphene oxide reduction on the photo-actuation performance. Polymers 2018, 10, 832. [CrossRef] 28. Mrlik, M.; Cvek, M.; Osicka, J.; Moucka, R.; Sedlacik, M.; Pavlinek, V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018, 211, 138–141. [CrossRef] 29. Mrlik, M.; Ilcikova, M.; Plachy, T.; Moucka, R.; Pavlinek, V.; Mosnacek, J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate). J. Ind. Eng. Chem. 2018, 57, 104–112. [CrossRef] 30. Yoon, J.T.; Lee, S.C.; Jeong, Y.G. Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos. Sci. Technol. 2010, 70, 776–782. [CrossRef] 31. Ilcikova, M.; Mrlik, M.; Spitalsky, Z.; Micusik, M.; Csomorova, K.; Sasinkova, V.; Kleinova, A.; Mosnacek, J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. Catalysis of atom transfer radical polymerization. Rsc Adv. 2015, 5, 3370–3376. [CrossRef] 32. Ma, C.X.; Le, X.X.; Tang, X.L.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J.W.; Huang, Y.J.; et al. A multiresponsive anisotropic hydrogel with macroscopic 3d complex deformations. Adv. Funct. Mater. 2016, 26, 8670–8676. [CrossRef]
utb.fulltext.sponsorship This research was funded by the Czech Science Foundation (No. 16-20361Y). This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic—program NPU I (LO1504). M.I. and J.M. gratefully acknowledge to APVV-15-0545 and APVV-14-0891 for financial support.
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 45, Slovakia
utb.fulltext.projects LO1504
utb.fulltext.projects APVV-15-0545
utb.fulltext.projects APVV-14-0891
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International