TBU Publications
Repository of TBU Publications

Contribution of red wine consumption to human health protection

DSpace Repository

Show simple item record

dc.title Contribution of red wine consumption to human health protection en
dc.contributor.author Snopek, Lukáš
dc.contributor.author Mlček, Jiří
dc.contributor.author Sochorová, Lenka
dc.contributor.author Baroň, Mojmír
dc.contributor.author Hlaváčová, Irena
dc.contributor.author Juríková, Tünde
dc.contributor.author Kizek, René
dc.contributor.author Sedláčková, Eva
dc.contributor.author Sochor, Jiří
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 23
utb.relation.issue 7
dc.citation.spage 1
dc.citation.epage 16
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI AG)
dc.identifier.doi 10.3390/molecules23071684
dc.relation.uri http://www.mdpi.com/1420-3049/23/7/1684
dc.subject red wine en
dc.subject human en
dc.subject health en
dc.subject alcohol en
dc.subject phenolic compounds en
dc.subject antioxidants en
dc.description.abstract Wine consumption has been popular worldwide for many centuries. Based on in vitro and in vivo studies, a certain amount of everyday wine consumption may prevent various chronic diseases. This is due, in part, to the presence and amount of important antioxidants in red wine, and, therefore, research has focused on them. Wine polyphenols, especially resveratrol, anthocyanins, and catechins, are the most effective wine antioxidants. Resveratrol is active in the prevention of cardiovascular diseases by neutralizing free oxygen radicals and reactive nitrogenous radicals; it penetrates the blood-brain barrier and, thus, protects the brain and nerve cells. It also reduces platelet aggregation and so counteracts the formation of blood clots or thrombi. The main aim of this review is to summarize the current findings about the positive influence of wine consumption on human organ function, chronic diseases, and the reduction of damage to the cardiovascular system. © 2018 by the authors. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008151
utb.identifier.obdid 43879078
utb.identifier.scopus 2-s2.0-85050484534
utb.identifier.wok 000445301800187
utb.identifier.pubmed 29997312
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2018-08-29T08:26:56Z
dc.date.available 2018-08-29T08:26:56Z
dc.description.sponsorship [DG16P02R017]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.contributor.internalauthor Snopek, Lukáš
utb.contributor.internalauthor Mlček, Jiří
utb.contributor.internalauthor Hlaváčová, Irena
utb.contributor.internalauthor Sedláčková, Eva
utb.fulltext.affiliation Lukas Snopek 1 https://orcid.org/0000-0002-8537-4217 , Jiri Mlcek 1,*, Lenka Sochorova 2, Mojmir Baron 2, Irena Hlavacova 1, Tunde Jurikova 3 https://orcid.org/0000-0002-8286-8262 , Rene Kizek 4, Eva Sedlackova 1 and Jiri Sochor 2 1 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, CZ-760 01 Zlín, Czech Republic; lsnopek@ft.utb.cz (Lu.S.); ihlavacova@ft.utb.cz (I.H.); evsedl@seznam.cz (E.S.) 2 Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic; lenka.sochorova@mendelu.cz (Le.S.); mojmir.baron@mendelu.cz (M.B.); sochor.jirik@seznam.cz (J.S.) 3 Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, SK-949 74 Nitra, Slovakia; tjurikova@ukf.sk 4 Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, CZ-612 42 Brno, Czech Republic; kizekr@vfu.cz * Correspondence: mlcek@ft.utb.cz; Tel.: +420-576-033-030
utb.fulltext.dates Received: 15 May 2018; Accepted: 9 July 2018; Published: 11 July 2018
utb.fulltext.references 1. Lukacs, P. Inventing Wine: A New History of One of the World’s Most Ancient Pleasures; WW Norton & Company: New York, NY, USA, 2012; ISBN 978-0-393-34707-4. 2. Snopek, L.; Mlček, J.; Fic, V.; Hlaváčová, I.; Škrovánková, S.; Fišera, M.; Velichová, H.; Ondrášová, M. Interaction of polyphenols and wine antioxidants with its Sulfur dioxide preservative. Potravin. Slovak J. Food Sci. 2018, 12, 180–185. [CrossRef] 3. Teissedre, P.L.; Stockley, C.; Boban, M.; Ruf, J.C.; Alba, M.O.; Gambert, P.; Flesh, M. The effects of wine consumption on cardiovascular disease and associated risk factors: A narrative review. OENO ONE 2018, 52, 67–79. [CrossRef] 4. Klatsky, A.L. Alcohol and cardiovascular diseases. Expert Rev. Cardiovasc. Ther. 2009, 7, 499–506. [CrossRef] [PubMed] 5. Cavallini, G.; Straniero, S.; Donati, A.; Bergamini, E. Resveratrol requires red wine polyphenols for optimum antioxidant activity. J. Nutr. Health Aging 2016, 20, 540–545. [CrossRef] [PubMed] 6. Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. 7. Del Pino-García, R.; González-SanJosé, M.L.; Rivero-Pérez, M.D.; García-Lomillo, J.; Muñiz, P. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chem. 2017, 221, 1723–1732. [CrossRef] [PubMed] 8. Kim, J.H.; Auger, C.; Kurita, I.; Anselm, E.; Rivoarilala, L.O.; Lee, H.J.; Schini-Kerth, V.B. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide-Biol. Chem. 2013, 35, 54–64. [CrossRef] [PubMed] 9. Schini-Kerth, V.B.; Auger, C.; Étienne-Selloum, N.; Chataigneau, T. Polyphenol-Induced Endothelium-Dependent Relaxations: Role of NO and EDHF. Cardiovasc. Pharmacol. Endothel. Control 2010, 60, 133–175. [CrossRef] 10. Qureshi, S.A.; Lund, A.C.; Veierød, M.B.; Carlsen, M.H.; Blomhoff, R.; Andersen, L.F.; Ursin, G. Food items contributing most to variation in antioxidant intake; a cross-sectional study among Norwegian women. BMC Public Health 2014, 14. [CrossRef] [PubMed] 11. Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; Espín, J.C. Resveratrol in primary and secondary prevention of cardiovascular disease: A dietary and clinical perspective. Ann. N. Y. Acad. Sci. 2013, 1290, 37–51. [CrossRef] [PubMed] 12. Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomas-Barberan, F.; Teresa Garcia-Conesa, M.; Carlos Espin, J. Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Curr. Pharm. Des. 2013, 19, 6064–6093. [CrossRef] [PubMed] 13. Montsko, G.; Ohmacht, R.; Mark, L. trans-Resveratrol and trans-Piceid Content of Hungarian Wines. Chromatographia 2010, 71, 121–124. [CrossRef] 14. Pandey, K.B.; Rizvi, S.I. Anti-oxidative action of resveratrol: Implications for human health. Arab. J. Chem. 2011, 4, 293–298. [CrossRef] 15. Peng, X.L.; Qu, W.; Wang, L.Z.; Huang, B.Q.; Ying, C.J.; Sun, X.F.; Hao, L.P. Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation. PLoS ONE 2014, 9, e113716. [CrossRef] [PubMed] 16. Oh, W.Y.; Shahidi, F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem. 2018, 261, 267–273. [CrossRef] [PubMed] 17. Das, J.; Pany, S.; Majhi, A. Chemical modifications of resveratrol for improved protein kinase C alpha activity. Bioorgan. Med. Chem. 2011, 19, 5321–5333. [CrossRef] [PubMed] 18. Mannari, C.; Bertelli, A.A.E.; Stiaccini, G.; Giovannini, L. Wine, sirtuins and nephroprotection: Not only resveratrol. Med. Hypotheses 2010, 75, 636–638. [CrossRef] [PubMed] 19. Ghanim, H.; Sia, C.L.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010, 95, E1–E8. [CrossRef] [PubMed] 20. Rahman, M.M.; Bak, I.; Das, D.K. Effectiveness of Resveratrol against Cardiovascular Disease. Mini-Rev. Org. Chem. 2010, 7, 256–261. [CrossRef] 21. Romain, C.; Gaillet, S.; Carillon, J.; Vidé, J.; Ramos, J.; Izard, J.C.; Rouanet, J.M. Vineatrol and Cardiovascular Disease: Beneficial Effects of a Vine-Shoot Phenolic Extract in a Hamster Atherosclerosis Model. J. Agric. Food Chem. 2012, 60, 11029–11036. [CrossRef] [PubMed] 22. Mokni, M.; Hamlaoui, S.; Karkouch, I.; Amri, M.; Marzouki, L.; Limam, F.; Aouani, E. Resveratrol Provides Cardioprotection after Ischemia/reperfusion Injury via Modulation of Antioxidant Enzyme Activities. Iran. J. Pharm. Res. 2013, 12, 867–875. [PubMed] 23. Ghanim, H.; Sia, C.L.; Korzeniewski, K.; Lohano, T.; Abuaysheh, S.; Marumganti, A.; Dandona, P. A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high carbohydrate meal. J. Clin. Endocrinol. Metab. 2011, 96, 1409–1414. [CrossRef] [PubMed] 24. Brasnyó, P.; Molnár, G.A.; Mohás, M.; Markó, L.; Laczy, B.; Cseh, J.; Mészáros, L.G. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011, 106, 383–389. [CrossRef] [PubMed] 25. Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Moonen-Kornips, E. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14, 612–622. [CrossRef] [PubMed] 26. Bo, S.; Ciccone, G.; Castiglione, A.; Gambino, R.; De Michieli, F.; Villois, P.; Cassader, M. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo controlled, cross-over trial. Curr. Med. Chem. 2013, 20, 1323–1331. [CrossRef] [PubMed] 27. Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012, 32, 537–541. [CrossRef] 28. Knop, F.K.; Konings, E.; Timmers, S.; Schrauwen, P.; Holst, J.J.; Blaak, E.E. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet. Med. 2013, 30, 1214–1218. [CrossRef] [PubMed] 29. Bashmakov, Y.K.; Assaad-Khalil, S.H.; Abou Seif, M.; Udumyan, R.; Megallaa, M.; Rohoma, K.H.; Petyaev, I.M. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol. 2014, 2014, 816307. [CrossRef] [PubMed] 30. Dos Santos, K.C.; Braga, C.P.; Barbanera, P.O.; Seiva, F.R.F.; Junior, A.F.; Fernandes, A.A.H. Cardiac Energy Metabolism and Oxidative Stress Biomarkers in Diabetic Rat Treated with Resveratrol. PLoS ONE 2014, 9, e102775. [CrossRef] [PubMed] 31. Semba, R.D.; Ferrucci, L.; Bartali, B.; Urpí-Sarda, M.; Zamora-Ros, R.; Sun, K.; Andres-Lacueva, C. Resveratrol Levels and All-Cause Mortality in Older Community-Dwelling Adults. JAMA Int. Med. 2014, 174, 1077–1084. [CrossRef] [PubMed] 32. Menet, M.C.; Marchal, J.; Dal-Pan, A.; Taghi, M.; Nivet-Antoine, V.; Dargère, D.; Cottart, C.H. Resveratrol Metabolism in a Non-Human Primate, the Grey Mouse Lemur (Microcebus murinus), Using Ultra-High-Performance Liquid Chromatography–Quadrupole Time of Flight. PLoS ONE 2014, 9, e91932. [CrossRef] [PubMed] 33. Park, E.S.; Kang, J.C.; Jang, Y.C.; Park, J.S.; Jang, S.Y.; Kim, D.E.; Shin, H.S. Cardioprotective effects of rhamnetin in H9c2 cardiomyoblast cells under H2O2-induced apoptosis. J. Ethnopharmacol. 2014, 153, 552–560. [CrossRef] [PubMed] 34. Quintieri, A.M.; Baldino, N.; Filice, E.; Seta, L.; Vitetti, A.; Tota, B.; Angelone, T. Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J. Nutr. Biochem. 2013, 24, 1221–1231. [CrossRef] [PubMed] 35. Bognar, E.; Sarszegi, Z.; Szabo, A.; Debreceni, B.; Kalman, N.; Tucsek, Z.; Gallyas, F., Jr. Antioxidant and Anti-Inflammatory Effects in RAW264.7 Macrophages of Malvidin, a Major Red Wine Polyphenol. PLoS ONE 2013, 8, e65355. [CrossRef] 36. Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134, 613–617. [CrossRef] [PubMed] 37. Corder, R.; Mullen, W.; Khan, N.Q.; Marks, S.C.; Wood, E.G.; Carrier, M.J.; Crozier, A. Oenology: Red wine procyanidins and vascular health. Nature 2006, 444, 566. [CrossRef] [PubMed] 38. Panchal, S.K.; Brown, L. Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus petraea L.) extract in rats. Eur. J. Nutr. 2013, 52, 397–408. [CrossRef] [PubMed] 39. Rossi, M.; Praud, D.; Compagnoni, M.M.; Bellocco, R.; Serafini, M.; Parpinel, M.; Tavani, A. Dietary non-enzymatic antioxidant capacity and the risk of myocardial infarction: A case-control study in Italy. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1246–1251. [CrossRef] [PubMed] 40. Elmadhun, N.Y.; Sabe, A.A.; Lassaletta, A.D.; Sellke, F.W. Ethanol promotes new vessel growth in remote nonischemic myocardium. J. Surg. Res. 2015, 193, 536–542. [CrossRef] [PubMed] 41. Platiša, M.M.; Gal, V.; Nestorović, Z.; Gojković-Bukarica, L. Quantification of the acute effect of a low dose of red wine by nonlinear measures of RR and QT interval series in healthy subjects. Comput. Biol. Med. 2014, 53, 291–296. [CrossRef] [PubMed] 42. Matsumoto, C.; Miedema, M.D.; Ofman, P.; Gaziano, J.M.; Sesso, H.D. An Expanding Knowledge of the Mechanisms and Effects of Alcohol Consumption on Cardiovascular Disease. J. Cardiopulm. Rehabil. Prev. 2014, 34, 159–171. [CrossRef] [PubMed] 43. Toth, A.; Sandor, B.; Papp, J.; Rabai, M.; Botor, D.; Horvath, Z.; Czopf, L. Moderate red wine consumption improves hemorheological parameters in healthy volunteers. Clin. Hemorheol. Microcirc. 2014, 56, 13–23. [CrossRef] [PubMed] 44. Elmadhun, N.Y.; Sabe, A.A.; Lassaletta, A.D.; Sellke, F.W. Alcohol Consumption Mitigates Apoptosis and Mammalian Target of Rapamycin Signaling in Myocardium. J. Am. Coll. Surg. 2014, 218, 1175–1181. [CrossRef] [PubMed] 45. Droste, D.W.; Iliescu, C.; Vaillant, M.; Gantenbein, M.; De Bremaeker, N.; Lieunard, C.; Gilson, G. A daily glass of red wine associated with lifestyle changes independently improves blood lipids in patients with carotid arteriosclerosis: Results from a randomized controlled trial. Nutr. J. 2013, 12. [CrossRef] [PubMed] 46. Chu, L.M.; Lassaletta, A.D.; Robich, M.P.; Liu, Y.; Burgess, T.; Laham, R.J.; Sellke, F.W. Effects of Red Wine and Vodka on Collateral-Dependent Perfusion and Cardiovascular Function in Hypercholesterolemic Swine. Circulation 2012, 126, S65–S72. [CrossRef] [PubMed] 47. Yoo, Y.J.; Saliba, A.J.; MacDonald, J.B.; Prenzler, P.D.; Ryan, D. A cross-cultural study of wine consumers with respect to health benefits of wine. Food Qual. Prefer. 2013, 28, 531–538. [CrossRef] 48. Djoussé, L.; Lee, I.-M.; Buring, J.E.; Gaziano, J.M. Alcohol Consumption and Risk of Cardiovascular Disease and Mortality in Women: Potential Mediating Mechanisms. Circulation 2009, 120, 237–244. [CrossRef] [PubMed] 49. Gea, A.; Bes-Rastrollo, M.; Toledo, E.; Garcia-Lopez, M.; Beunza, J.J.; Estruch, R.; Martinez-Gonzalez, M.A. Mediterranean alcohol-drinking pattern and mortality in the SUN (Seguimiento Universidad de Navarra) Project: A prospective cohort study. Br. J. Nutr. 2014, 111, 1871–1880. [CrossRef] [PubMed] 50. O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and Cardiovascular Health: The Dose Makes the Poison . . . or the Remedy. Mayo Clin. Proc. 2014, 89, 382–393. [CrossRef] [PubMed] 51. Yamagata, K.; Tagami, M.; Yamori, Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2015, 31, 28–37. [CrossRef] [PubMed] 52. Sinkiewicz, W.; Weglarz, M.; Chudzinska, M. Wine, alcohol and cardiovascular diseases. Kardiol. Polska 2014, 72, 771–776. [CrossRef] [PubMed] 53. Medina-Inojosa, J.; Jean, N.; Cortes-Bergoderi, M.; Lopez-Jimenez, F. The Hispanic Paradox in Cardiovascular Disease and Total Mortality. Prog. Cardiovasc. Dis. 2014, 57, 286–292. [CrossRef] [PubMed] 54. Vilahur, G.; Badimon, L. Antiplatelet properties of natural products. Vasc. Pharmacol. 2013, 59, 67–75. [CrossRef] [PubMed] 55. Cioni, G.; Boddi, M.; Fatini, C.; Romagnuolo, I.; Casini, A.; Gensini, G.F.; Sofi, F. Peripheral-Arterial Tonometry for Assessing Endothelial Function in Relation to Dietary Habits. J. Investig. Med. 2013, 61, 867–871. [CrossRef] [PubMed] 56. Giacosa, A.; Barale, R.; Bavaresco, L.; Gatenby, P.; Gerbi, V.; Janssens, J.; Morazzoni, P. Cancer prevention in Europe: The Mediterranean diet as a protective choice. Eur. J. Cancer Prev. 2013, 22, 90–95. [CrossRef] [PubMed] 57. Tognon, G.; Lissner, L.; Sæbye, D.; Walker, K.Z.; Heitmann, B.L. The Mediterranean diet in relation to mortality and CVD: A Danish cohort study. Br. J. Nutr. 2014, 111, 151–159. [CrossRef] [PubMed] 58. Stricker, M.D.; Onland-Moret, N.C.; Boer, J.M.A.; Van Der Schouw, Y.T.; Verschuren, W.M.M.; May, A.M.; Beulens, J.W.J. Dietary patterns derived from principal component- and k-means cluster analysis: Long-term association with coronary heart disease and stroke. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 250–256. [CrossRef] [PubMed] 59. Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [CrossRef] [PubMed] 60. Lin, Y.; Yngve, A.; Lagergren, J.; Lu, Y. A dietary pattern rich in lignans, quercetin and resveratrol decreases the risk of oesophageal cancer. Br. J. Nutr. 2014, 112, 2002–2009. [CrossRef] [PubMed] 61. Bremholm, L.; Funch-Jensen, P.; Eriksen, J.; Hendel, L.; Havelund, T.; Matzen, P. Barrett’s esophagus. Diagnosis, follow-up and treatment. Dan. Med. J. 2012, 59, C4499. [PubMed] 62. Thrift, A.P.; Cook, M.B.; Vaughan, T.L.; Anderson, L.A.; Murray, L.J.; Whiteman, D.C.; Corley, D.A. Alcohol and the Risk of Barrett’s Esophagus: A Pooled Analysis from the International BEACON Consortium. Am. J. Gastroenterol. 2014, 109, 1586–1594. [CrossRef] [PubMed] 63. Thrift, A.P.; Pandeya, N.; Smith, K.J.; Mallitt, K.A.; Green, A.C.; Webb, P.M.; Whiteman, D.C. Lifetime Alcohol Consumption and Risk of Barrett’s Esophagus. Am. J. Gastroenterol. 2011, 106, 1220–1230. [CrossRef] [PubMed] 64. Kasicka-Jonderko, A. Alcohol and the digestive system—Should it always be blamed? Prz. Gastroenterol. 2012, 7, 264–275. [CrossRef] 65. Barstad, B.; Sørensen, T.I.A.; Tjønneland, A.; Johansen, D.; Becker, U.; Andersen, I.B.; Grønbæk, M. Intake of wine, beer and spirits and risk of gastric cancer. Eur. J. Cancer Prev. 2005, 14, 239–243. [CrossRef] [PubMed] 66. Rosen, L.; Rosen, G. Cancer Facts and Figures; American Cancer Society: Atlanta, GA, USA, 2008. 67. Biasi, F.; Deiana, M.; Guina, T.; Gamba, P.; Leonarduzzi, G.; Poli, G. Wine consumption and intestinal redox homeostasis. Redox Biol. 2014, 2, 795–802. [CrossRef] [PubMed] 68. Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [CrossRef] [PubMed] 69. Tessitore, L.; Davit, A.; Sarotto, I.; Caderni, G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21CIP expression. Carcinogenesis 2000, 21, 1619–1622. [CrossRef] [PubMed] 70. Bishayee, A.; Politis, T.; Darvesh, A.S. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat. Rev. 2010, 36, 43–53. [CrossRef] [PubMed] 71. Carbó, N.; Costelli, P.; Baccino, F.M.; López-Soriano, F.J.; Argilés, J.M. Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. Biochem. Biophys. Res. Commun. 1999, 254, 739–743. [CrossRef] [PubMed] 72. Lee, E.S.; Shin, M.O.; Yoon, S.; Moon, J.O. Resveratrol Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis in Rats. Arch. Pharm. Res. 2010, 33, 925–932. [CrossRef] [PubMed] 73. Oi, N.; Jeong, C.H.; Nadas, J.; Cho, Y.Y.; Pugliese, A.; Bode, A.M.; Dong, Z. Resveratrol, a Red Wine Polyphenol, Suppresses Pancreatic Cancer by Inhibiting Leukotriene A4 Hydrolase. Cancer Res. 2010, 70, 9755–9764. [CrossRef] [PubMed] 74. Da Luz, P.L.; Coimbra, S.; Favarato, D.; Albuquerque, C.; Mochiduky, R.I.; Rochitte, C.E.; Laurindo, F.R. Coronary artery plaque burden and calcium scores in healthy men adhering to long-term wine drinking or alcohol abstinence. Braz. J. Med. Biol. Res. 2014, 47, 697–705. [CrossRef] 75. Janega, P.; Klimentová, J.; Barta, A.; Kovácsová, M.; Vranková, S.; Cebová, M.; Pechánová, O. Red wine extract decreases pro-inflammatory markers, nuclear factor-kappa B and inducible NOS, in experimental metabolic syndrome. Food Funct. 2014, 5, 2202–2207. [CrossRef] [PubMed] 76. Dutta, D.; Xu, J.; Dirain, M.L.; Leeuwenburgh, C. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radic. Biol. Med. 2014, 74, 252–262. [CrossRef] [PubMed] 77. Lee, D.H.; Choi, S.S.; Kim, B.B.; Kim, S.Y.; Kang, B.S.; Lee, S.J.; Park, H.J. Effect of alcohol-free red wine concentrates on cholesterol homeostasis: An in vitro and in vivo study. Process Biochem. 2013, 48, 1964–1971. [CrossRef] 78. Karadeniz, M.; Akçay, Y.D.; Yıldırım, H.K.; Yılmaz, C.; Sözmen, E.Y. Effect of Red Wine Consumption on Serum Oxidation and Adiponectin Levels in Overweight and Healthy Individuals. Pol. J. Food Nutr. Sci. 2014, 64, 201–207. [CrossRef] 79. Xiang, L.; Xiao, L.; Wang, Y.; Li, H.; Huang, Z.; He, X. Health benefits of wine: Don’t expect resveratrol too much. Food Chem. 2014, 156, 258–263. [CrossRef] [PubMed] 80. Bresciani, L.; Calani, L.; Bocchi, L.; Delucchi, F.; Savi, M.; Ray, S.; Del Rio, D. Bioaccumulation of resveratrol metabolites in myocardial tissue is dose-time dependent and related to cardiac hemodynamics in diabetic rats. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 408–415. [CrossRef] [PubMed] 81. Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Guillén, M.; Lamuela-Raventós, R.M.; Llorach, R.; Andres-Lacueva, C.; et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013, 32, 200–206. [CrossRef] [PubMed] 82. Blomster, J.I.; Zoungas, S.; Chalmers, J.; Li, Q.; Chow, C.K.; Woodward, M.; Neal, B. The Relationship between Alcohol Consumption and Vascular Complications and Mortality in Individuals with Type 2 Diabetes. Diabetes Care 2014, 37, 1353–1359. [CrossRef] [PubMed] 83. Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Arranz, S.; Valderas-Martinez, P.; Casas, R.; Estruch, R. Dealcoholized Red Wine Decreases Systolic and Diastolic Blood Pressure and Increases Plasma Nitric Oxide. Circ. Res. 2012, 111, 1065. [CrossRef] [PubMed] 84. Bulut, D.; Jelich, U.; Dacanay-Schwarz, R.; Mügge, A. Red Wine Ingestion Prevents Microparticle Formation after a Single High-Fat Meal-A Crossover Study in Healthy Humans. J. Cardiovasc. Pharmacol. 2013, 61, 489–494. [CrossRef] [PubMed] 85. Toth, A.; Papp, J.; Rabai, M.; Kenyeres, P.; Marton, Z.; Kesmarky, G.; Toth, K. The role of hemorheological factors in cardiovascular medicine. Clin. Hemorheol. Microcirc. 2014, 56, 197–204. [CrossRef] [PubMed] 86. Dillenburg, D.R.; Mostarda, C.; Moraes-Silva, I.C.; Ferreira, D.; Bós, D.D.S.G.; Duarte, A.A.M.; Rigatto, K. Resveratrol and grape juice differentially ameliorate cardiovascular autonomic modulation in L-NAME-treated rats. Auton. Neurosci.-Basic Clin. 2013, 179, 9–13. [CrossRef] [PubMed] 87. Levantesi, G.; Marfisi, R.; Mozaffarian, D.; Franzosi, M.G.; Maggioni, A.; Nicolosi, G.L.; Marchioli, R. Wine consumption and risk of cardiovascular events after myocardial infarction: Results from the GISSI-Prevenzione trial. Int. J. Cardiol. 2013, 163, 282–287. [CrossRef] [PubMed] 88. Covas, M.I.; Gambert, P.; Fitó, M.; de la Torre, R. Wine and oxidative stress: Up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 2010, 208, 297–304. [CrossRef] [PubMed]
utb.fulltext.sponsorship The financial support received for the project DG16P02R017 “Viticulture and Enology for Maintaining and Restoring Cultural Identity Wine Regions in Moravia” is gratefully acknowledged.
utb.scopus.affiliation Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, Zlín, Czech Republic; Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, Lednice, Czech Republic; Institute for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra, Slovakia; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, Brno, Czech Republic
utb.fulltext.projects DG16P02R017
Find Full text

Files in this item

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International