Publikace UTB
Repozitář publikační činnosti UTB

Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications en
dc.contributor.author Lorencová, Lenka
dc.contributor.author Bertók, Tomáš
dc.contributor.author Filip, Jaroslav
dc.contributor.author Jerigová, Monika
dc.contributor.author Velič, Dušan
dc.contributor.author Kasák, Peter
dc.contributor.author Mahmoud, Khaled A.
dc.contributor.author Tkáč, Ján
dc.relation.ispartof Sensors and Actuators, B: Chemical
dc.identifier.issn 0925-4005 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 263
dc.citation.spage 360
dc.citation.epage 368
dc.type article
dc.language.iso en
dc.publisher Elsevier BV
dc.identifier.doi 10.1016/j.snb.2018.02.124
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0925400518304039
dc.subject Ti3C2Tx MXene en
dc.subject H2O2 sensor en
dc.subject Pt nanoparticles en
dc.subject Nafion en
dc.subject Chitosan en
dc.subject Redox stability en
dc.description.abstract Electrochemical performance of a 2D Ti3C2Tx (MXene, where T: [dbnd]O, –OH, –F) sheets modified with Pt nanoparticles (PtNPs) was investigated. The results showed that Ti3C2Tx/PtNP nanocomposite deposited on the surface of GCE showed much better and stable redox behavior in an anodic potential window as compared to the GCE modified with pristine Ti3C2Tx MXene. For example, the H2O2 sensor of Ti3C2Tx/PtNP on GCE offered LOD of 448 nM with a potential at which reduction starts of ∼+250 mV (vs. Ag/AgCl) in comparison to values of 883 μM and ∼−160 mV observed for Ti3C2Tx modified GCE. Moreover, the Ti3C2Tx/PtNP sensor could detect small redox molecules such as ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (APAP) at a potential higher than +250 mV with high selectivity and LOD down to nM level. We proved that selectivity of detection of such molecules (AA, DA, UA and APAP) could be modulated to high extent using external membranes. © 2018 Elsevier B.V. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007777
utb.identifier.obdid 43878906
utb.identifier.scopus 2-s2.0-85042452312
utb.identifier.wok 000427704400041
utb.identifier.coden SABCE
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:41Z
dc.date.available 2018-04-23T15:01:41Z
dc.description.sponsorship 26240120007, ERDF, European Regional Development Fund; 311532, ERC, European Research Council; 9-219-2-105, QNRF, Qatar National Research Fund
dc.description.sponsorship Slovak Scientific Grant Agency VEGA [2/0162/14]; Slovak Research and Development Agency [APVV-15-0227]; European Research Council [311532]; NPRP from the Qatar National Research Fund [9-219-2-105]; ERDF [26240120007]
utb.contributor.internalauthor Filip, Jaroslav
utb.fulltext.affiliation Lenka Lorencova a , Tomas Bertok a,∗ , Jaroslav Filip b , Monika Jerigova c,d , Dusan Velic c,d , Peter Kasak e , Khaled A. Mahmoud f , Jan Tkac a,∗ a Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic b Department of Environment Protection Engineering, Tomas Bata University in Zlin, Vavreckova 275, Zlin 762 72, Czech Republic c Department of Physical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Bratislava 842 15, Slovak Republic d International Laser Centre, Ilkovicova 3, Bratislava 841 04, Slovak Republic e Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar f Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar ∗ Corresponding authors. E-mail addresses: Tomas.Bertok@savba.sk (T. Bertok), Jan.Tkac@savba.sk (J. Tkac).
utb.fulltext.dates Received 20 December 2017 Received in revised form 14 February 2018 Accepted 16 February 2018 Available online 19 February 2018
utb.fulltext.references [1] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2, Adv. Mater. (Deerfield Beach, Fla) 23 (2011) 4248–4253. [2] M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-Ion storage, Adv. Mater. 29 (2017) (1702410-n/a). [3] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L.Y.S. Lee, Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev. 352 (2017) 306–327. [4] F. Wang, C.H. Yang, C.Y. Duan, D. Xiao, Y. Tang, J.F. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162 (2015) B16–B21. [5] F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances, Biosens. Bioelectron. 74 (2015) 1022–1028. [6] H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, Z. Zhu, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sens. Actuators B 218 (2015) 60–66. [7] R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite, Sci. Rep. 6 (2016) 36422. [8] L. Zhou, X. Zhang, L. Ma, J. Gao, Y. Jiang, Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection, Biochem. Eng. J. 128 (2017) 243–249. [9] C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu, Y. Chen, Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia, Chem. Mater. 29 (2017) 8637–8652. [10] M. Sajid, A. Osman, G.U. Siddiqui, H.B. Kim, S.W. Kim, J.B. Ko, Y.K. Lim, K.H. Choi, All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis, Sci. Rep. 7 (2017). [11] X.-f. Yu, Y.-c. Li, J.-b. Cheng, Z.-b. Liu, Q.-z. Li, W.-z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2. a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces 7 (2015) 13707–13713. [12] S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Ti2CO2. A promising candidate as a SO2 gas sensor or capturer, J. Phys. Chem. C 121 (2017). [13] E. Lee, A. Vahidmohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS Appl. Mater. Interfaces 9 (2017) 37184–37190. [14] B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity, Adv. Mater. 28 (2016) 3333–3339. [15] L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, K.A. Mahmoud, J. Tkac, Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing, Electrochim. Acta 235 (2017) 471–479. [16] F. Xiao, F. Zhao, Y. Zhang, G. Guo, B. Zeng, Ultrasonic electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors, J. Phys. Chem. C 113 (2009) 849–855. [17] W. Liu, K. Hiekel, R. Hübner, H. Sun, A. Ferancova, M. Sillanpää, Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: influences of bimetallic effect and silica support, Sens. Actuators B 255 (2018) 1325–1334. [18] J.-X. Zhou, L.-N. Tang, F. Yang, F.-X. Liang, H. Wang, Y.-T. Li, G.-J. Zhang, MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells, Analyst 142 (2017) 4322–4329. [19] J. Zhou, Y. Zhao, J. Bao, D. Huo, H. Fa, X. Shen, C. Hou, One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor, Electrochim. Acta 250 (2017) 152–158. [20] S. Karakaya, Y. Dilgin, Flow injection amperometric analysis of H2O2 at platinum nanoparticles modified pencil graphite electrode, Electroanalysis 29 (2017) 1626–1634. [21] Y. Yang, R. Fu, J. Yuan, S. Wu, J. Zhang, H. Wang, Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures, Microchim. Acta 182 (2015) 2241–2249. [22] J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron. 74 (2015) 71–77. [23] G. Yu, W. Wu, X. Pan, Q. Zhao, X. Wei, Q. Lu, High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets, Sensors (Basel, Switzerland) 15 (2015) 2709–2722. [24] X. Xie, S. Chen, W. Ding, Y. Nie, Z. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2 × 2 (X = OH F) nanosheets for oxygen reduction reaction, Chem. Commun. 49 (2013) 10112–10114. [25] J. Liu, X. Bo, Z. Zhao, L. Guo, Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron. 74 (2015) 71–77. [26] Y. Sun, K. He, Z. Zhang, A. Zhou, H. Duan, Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode, Biosens. Bioelectron. 68 (2015) 358–364. [27] S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A.I. Yaropolov, J.W. Whittaker, L. Gorton, Direct electron transfer between copper-containing proteins and electrodes, Biosens. Bioelectron. 20 (2005) 2517–2554. [28] E. Mazzotta, A. Caroli, E. Primiceri, A.G. Monteduro, G. Maruccio, C. Malitesta, All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation, J. Solid State Electrochem. 21 (2017) 3495–3504. [29] Y. Shen, Q. Sheng, J. Zheng, A high-performance electrochemical dopamine sensor based on a platinum-nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite, Anal. Methods 9 (2017) 4566–4573. [30] K. Zhang, X. Chen, Z. Li, Y. Wang, S. Sun, L. n. Wang, T. Guo, D. Zhang, Z. Xue, X. Zhou, X. Lu, Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid, Talanta 178 (2018) 315–323. [31] N.G. Tsierkezos, S.H. Othman, U. Ritter, L. Hafermann, A. Knauer, J.M. Köhler, C. Downing, E.K. McCarthy, Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes, Sens. Actuators B 231 (2016) 218–229. [32] S. Ramakrishnan, K.R. Pradeep, A. Raghul, R. Senthilkumar, M. Rangarajan, N.K. Kothurkar, One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid, Anal. Methods 7 (2015) 779–786. [33] T.-Q. Xu, Q.-L. Zhang, J.-N. Zheng, Z.-Y. Lv, J. Wei, A.-J. Wang, J.-J. Feng, Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide, Electrochim. Acta 115 (2014) 109–115. [34] A.K. Deb, S.C. Das, A. Saha, M.B. Wayu, M. Hensley Marksberry, R.J. Baltz, C.C. Chusuei, Ascorbic acid, acetaminophen, and hydrogen peroxide detection using a dendrimer-encapsulated Pt nanoparticle carbon nanotube composite, J. Appl. Electrochem. 46 (2016) 289–298.
utb.fulltext.sponsorship Financial support received from the Slovak Scientific Grant Agency VEGA 2/0162/14 and Slovak Research and Development Agency APVV-15-0227 is acknowledged. The research received funding from the European Research Council (No. 311532). This publication was made possible by NPRP grant no. 9-219-2-105 from the Qatar National Research Fund. This publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions – Stage I, ITMS No.: 26240120007, supported by the ERDF.
utb.wos.affiliation [Lorencova, Lenka; Bertok, Tomas; Tkac, Jan] Slovak Acad Sci, Inst Chem, Dubravska Cesta 9, Bratislava 84538, Slovakia; [Filip, Jaroslav] Tomas Bata Univ Zlin, Dept Environm Protect Engn, Vavreckova 275, Zlin 76272, Czech Republic; [Jerigova, Monika; Velic, Dusan] Comenius Univ, Dept Phys Chem, Fac Nat Sci, Bratislava 84215, Slovakia; [Jerigova, Monika; Velic, Dusan] Int Laser Ctr, Ilkovicova 3, Bratislava 84104, Slovakia; [Kasak, Peter] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Mahmoud, Khaled A.] Hamad Bin Khalifa Univ, QEERI, Qatar Fdn, POB 34110, Doha, Qatar
utb.scopus.affiliation Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia; Department of Environment Protection Engineering, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic; Department of Physical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Bratislava, Slovakia; International Laser Centre, Ilkovicova 3, Bratislava, Slovakia; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam