Publikace UTB
Repozitář publikační činnosti UTB

New diols with imidazoquinazoline ring

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title New diols with imidazoquinazoline ring en
dc.contributor.author Szyszkowska, Agnieszka
dc.contributor.author Klásek, Antonín
dc.contributor.author Pawlędzio, Sylwia
dc.contributor.author Trzybiński, Damian
dc.contributor.author Woźniak, Krzysztof
dc.contributor.author Zarzyka, Iwona
dc.relation.ispartof Journal of Molecular Structure
dc.identifier.issn 0022-2860 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 1153
dc.citation.spage 230
dc.citation.epage 238
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.molstruc.2017.10.014
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0022286017313455
dc.subject Diol en
dc.subject Ethylene glycol en
dc.subject Hydroxyalkylation en
dc.subject Imidazoquinazoline ring en
dc.subject Oxirane en
dc.subject Transesterification en
dc.description.abstract The objective of these studies was to synthesize and characterize new diols with an imidazoquinazoline ring. New diols were obtained in reactions of 2,6-bis-(ethoxycarbonylmethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione with excess of ethylene glycol or in reaction of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline-3,5-dione with 2-M excess of ethylene oxide. The products were isolated at high yield and characterized by instrumental methods (IR, 1H- and 13C-NMR, MS-ESI, UV, TGA). The structure of 2,6-bis(2-hydroxyethyl)-1-phenylimidazo[1,5-c]quinazoline-3,5-dione (BEFIQ) was also investigated by single-crystal X-ray diffraction. BEFIQ crystallizes in the monoclinic P21/n space group with two molecules in the asymmetric unit of the crystal lattice. The nature of the packing of molecules in the crystal lattice of BEFIQ was investigated by Hirshfeld surface analysis. The described methods enable the synthesis of new diols with an imidazoquinazoline ring. The new diols are quite soluble in typical organic solvents. Therefore, they can be used as raw materials for the synthesis of thermally stable polymers, and they can also have biological activity. © 2017 Elsevier B.V. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007571
utb.identifier.obdid 43877351
utb.identifier.scopus 2-s2.0-85032379361
utb.identifier.wok 000416191800027
utb.identifier.coden JMOSB
utb.source j-scopus
dc.date.accessioned 2018-01-15T16:31:29Z
dc.date.available 2018-01-15T16:31:29Z
dc.description.sponsorship ERDF, European Regional Development Fund
dc.description.sponsorship European Union from European Regional Development Fund under Operational Programme Innovative Economy; DS budget; DS budget of Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology; TBU in Zlin [IGA/FT/2017/005]
utb.contributor.internalauthor Klásek, Antonín
utb.fulltext.affiliation Agnieszka Szyszkowska a, Antonin Klasek b, Sylwia Pawlędzio c, Damian Trzybiński c, Krzysztof Woźniak c, Iwona Zarzyka a, * a Department Organic Chemistry, Institution Rzeszow University of Technology, Powstańców Warszawy 6, 35-959, Rzeszow, Poland b Department Chemistry, Institution Tomas Bata University in Zlin, CZ-762 72, Zlin, Czech Republic c Department Chemistry, Biological and Chemical Research Centre, Institution University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland * Corresponding author. Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, P.O. Box: 35-959, Rzeszow, Poland. E-mail address: izarzyka@prz.edu.pl (I. Zarzyka).
utb.fulltext.dates Received 17 August 2017 Received in revised form 3 October 2017 Accepted 4 October 2017 Available online 8 October 2017
utb.fulltext.references [1] P.J. Stenhouse, E.M. Valles, S.W. Kantor, W.J. MacKnight, Thermal and rheological properties of a liquidecrystalline polyurethane, Macromolecules 22 (1989) 1467e1473. [2] S.K. Pollack, D.Y. Shen, Q. Wang, H.D. Stidham, S.L. Hsu, Infrared and x-ray diffraction studies of a semirigid polyurethane, Macromolecules 22 (1989) 551e557. [3] M. Bakar, A. Białkowska, Preparation and properties evaluation of nonisocyanate condensation polyurethanes based on phenol sulfonic acid and hydroxybenzoic acid, J. Plast. Films Sheet. 28 (2012) 260e275. [4] G. Smyth, E.M. Valles, S.K. Pollack, J. Grebowicz, P.J. Stenhouse, L.S. Hsu, W.J. MacKnight, Development of crystallinity in a polyurethane containing mesogenic units. 1. Morphology and mechanism, Macromolecules 23 (1990) 3389e3398. [5] F. Papadimitrakopoulos, S.L. Hsu, W.J. MacKnight, Investigation of a monotropic liquid crystal polyurethane based on biphenol, 2,6-tolylene diisocyanate, and a six methylene containing flexible spacer. 1. Thermal and structure characterization, Macromolecules 25 (1992) 4671e4682. [6] P. Penczek, K.C. Frisch, B. Szczepaniak, E. Rudnik, Synthesis and properties of liquid crystalline polyurethanes, J. Polym. Sci. Polym. Chem. 31 (1993) 1211e1220. [7] W. Tang, R.J. Farris, W.J. MacKnight, C.D. Eisenbach, Segmented polyurethane elastomers with liquid crystalline hard segments. 1. Synthesis and phase behavior, Macromolecules 27 (1994) 2814e2820. [8] R. Mix, J. Gähde, H. Goering, G. Schultz, Segmented polyurethanes with 4,40-bis-(6-hydroxyhexoxy)biphenyl as chain extender. Part 2. Synthesis and properties of MDIepolyurethanes in comparison with 2,4-TDI-polyurethanes, J. Polym. Sci. Polym. Chem. 34 (1996) 33e44. [9] T.F. Hsu, Y.D. Lee, Properties of thermoplastic polyurethane elastomers containing liquid crystalline chain extender (I) synthesis and properties of hard segments, Polymer 40 (1999) 577e584. [10] H. Valentová, J. Nedbal, M. Ilavský, P. Pissis, DSC, dielectric and dynamic mechanical behavior of two- and three-component ordered polyurethanes, Polymer 46 (2005) 4175e4182. [11] X.D. Jia, X.D. He, X.H. Yu, Synthesis and properties of main-chain liquid crystalline polyurethane elastomers with azoxybenzene, J. Appl. Polym. Sci. 62 (1996) 465e471. [12] M. Rogulska, W. Podkościelny, A. Kultys, S. Pikus, E. Poździk, Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. I. Synthesis and characterization of nonsegmented polyurethanes from HDI and MDI, Eur. Polym. J. 42 (2006) 1786e1795. [13] P. Mueller, B. Schartel, Melamine poly(metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy, J. Appl. Polym. Sci. 133 (2016) 43549e43562. [14] W. Xu, Ch Yu, X. Zhao, J. Xu, M. Jiang, Melamine formaldehyde/polyvinyl alcohol composite fiber: structures and properties controlled by reactioninduced phase separation, J. Appl. Polym. Sci. 133 (2016) 42918e42929. [15] I. Cisek-Cicirko, J. Lubczak, Polyurethane foams of improved thermal stability, Macromol. Mater. Eng. 287 (2002) 665e670. [16] B. Łukasiewicz, J. Lubczak, Polyurethane foams with purine ring and boron, J. Cell. Plast. 50 (2014) 337e359. [17] E. Kania, J. Lubczak, Polyurethane foams with pyrimidine rings, Pol. J. Chem. Tech. 16 (2014) 1e6. [18] J. Kosterna, J. Lubczak, Acrylic monomers and polymers with pyrimidine rings, Polimery 54 (2009) 581e584. [19] YE, Crosslinked polyethylene modified geogrid comprises high density polyethylene, linear low density polyethylene, chlorhexidine, maleic anhydride, isocyanuric acid diallyl ester, diisobutylaluminum hydride, and rare earth auxiliary agent, CN Patent 104,262,757-A (2015). [20] Y.Y. Vanchinsyan, N.S. Kachurina, Thermochemical properties of oxirane derivatives, Zh. Fiz. Khim. 61 (1987) 1196e1201. [21] J. Szczerba, Tworzywa i polimery o właściwościach specjalnych, Proj. i Konstr. inzynierskie 19 (2009) 11 _ e16. [22] J.F. Rabek, Współczesna Wiedza O Polimerach- Wybrane Zagadnienia, PWN, Warsaw, 2008. [23] J. Lubczak, Polyhydroxyalkyl derivatives and polyetherols obtained from azacyclic compounds part II. Reactions with formaldehyde and alkylene carbonates, Polimery 56 (2011) 452e460. [24] A. Ślączka, J. Lubczak, Hydroxyalkylation of barbituric acid. I. Hydroxymethyl derivatives of barbituric acid - precursors of polyetherols with a pyrimidine ring, J. Appl. Polym. Sci. 101 (2006) 3468e3478. [25] E. Chmiel-Szukiewicz, Hydroxyalkylation of 6-aminouracil, J. Appl. Polym. Sci. 100 (2006) 715e719. [26] A. Ślączka, J. Lubczak, Hydroxyalkylation of barbituric acid. III. Product analysis and reaction pathway, J. Appl. Polym. Sci. 112 (2009) 1601e1606. [27] K. Laemmerhold, J. Hofmann, H. Nefzger, Preparing polyether carbonate polyols, used to form polyurethane foam, comprises adding alkylene oxide and carbon dioxide to hydrogen-functional starter substance in presence of double metal cyanide catalyst and adding phosphorus component, WO Patent 2,015,014,732eA1 2015. [28] R. Lubczak, Polyurethane foams with carbazole ring, Cell. Polym. 34 (2015) 15e25. [29] A. Songur, A.O. Ozen, M. Sarsilmaz, The toxic effects of formaldehyde on the nervous system, Rev. Environ. Contam. Toxicol. 203 (2010) 105e118. [30] R.B. Perna, E.J. Bordini, M. Deinzer-Lifrak, A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure: clinical, psychometric, and functional findings, Arch. Clin. Neuropsychol. 16 (2001) 33e44. [31] L. Ehrenberg, S. Hussain, Genetic toxicity of some important epoxides, Mutat. Res. Rev. Mutat. 86 (1981) 1e113. [32] D.R. Wade, S.C. Airy, J.F. Sinsheimer, Mutagenicity of aliphatic epoxides, Mutat. Res. 58 (1978) 217e223. [33] I.L. Knunyants, Ethylene Oxide. Chemical Encyclopedia, fifth ed., Owls. day, 1988. [34] Y. Naniki, G. Hayashi, T. Sawada, T. Furukawa, T. Haruna, T. Takahashi, H. Yasuda, S. Yamamoto, Manufacture of cyclic carbonate used as e.g. solvent, involves filling fixed bed tube-type reactor with catalyst, performing pretreatment process, contacting epoxide and carbon dioxide with catalyst, and extracting reaction liquid, Pat. WO 2015008853eA1 2015. [35] T. Takahashi, H. Yasuda, S. Yamamoto, T. Naniki, Y. Hayashi, T. Haruna, T. Furukawa, Manufacture of cyclic carbonate used for e.g. organic solvent, involves reacting epoxide and carbon dioxide in presence of quaternary onium salt or solid catalyst, and adding halogenated organic compound containing halogen atoms, WO Patent 2,015,008,854eA1 2015. [36] G. Li, R. Kakarla, S.W. Gerritz, A. Pendri, B. Mac, A facile one-step synthesis of 5-chlo-roimidazo[1,5-a]quinazoline by microwave irradiation, Tetrahedron Lett. 50 (2009) 6048e6052. [37] G. Domány, T. Gizur, A. Gere, K. Takács-Novák, G. Farsang, G.G. Ferenczy, G. Tárkányi, M. Demeter, Imidazo[1,2-c]quinazolines with lipid peroxidation inhibitory effect, Eur. J. Med. Chem. 33 (1998) 181e187. [38] A. Klasek, K. Koristek, A. Lycka, M. Holcapek, Unprecedented reactivity of 3-amino-1H,3H-quinoline-2,4-diones with urea: an efficient synthesis of 2,6-dihydroimidazo[1,5-c]quinazoline-3,5-diones, Tetrahedron 59 (2003) 1283e1287. [39] K. Hęclik, A. Szyszkowska, D. Trzybinski, K. Woźniak, A. Klasek, I. Zarzyka, Esters with imidazo[1,5-c]quinazoline ring - Spectral characterization and quantum-mechanical modelling, J. Mol. Model. 23 (2017) 1e12. [40] Polish standard PN-87/C-89085/13. [41] CrysAlis CCD and CrysAlis RED, Oxford diffraction, Oxford diffraction ltd, Yarnton, 2008. [42] G.M. Sheldrick, A short history of SHELX, Acta Cryst. Sect. A 64 (2008) 112e122. [43] L.J. Farrugia, ORTEP-3 for windows - A version of ORTEP-III with a graphical user interface (GUI), J. Appl. Cryst. 30 (1997) 565e572. [44] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Cryst. 42 (2009) 339e341. [45] C.F. Macrae, P.R. Edgington, P.R.P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Cryst. 39 (2006) 453e457. [46] A.L. Speak, Structure validation in chemical crystallography, Acta Cryst. D65 (2009) 148e155. [47] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer (Version 3.1), University of Western Australia, 2012. [48] M. Wera, P. Storoniak, D. Trzybinski, B. Zadykowicz, J. Mol. Struct. 1125 (2016) 36e46. [49] A. Szyszkowska, K. Hęclik, D. Trzybinski, K. Woźniak, A. Klasek, I. Zarzyka, Synthesis, spectroscopic characterization and DFT calculations of monohydroxyalkylated derivatives of 1-phenyl-2H,6H-imidazo[1,5-c]quinazoline3,5-dione, J. Mol. Str. 1127 (2017) 708e715.
utb.fulltext.sponsorship Crystallographic study was performed by Sylwia Pawlędzio, Damian Trzybiński and Krzysztof Woźniak and was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007e2013. NMR spectra were made in the Laboratory of Spectrometry, Faculty of Chemistry, Rzeszow University of Technology and was financed from DS budget. Syntheses were performed by Agnieszka Szyszkowska, Iwona Zarzyka and were financed from DS budget of Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology. Antonin Klasek thanks for the financial support from the internal grant of TBU in Zlin (No. IGA/FT/2017/005), funded from the resources of specific university research.
utb.scopus.affiliation Department Organic Chemistry, Institution Rzeszów University of Technology, Powstańców Warszawy 6, Rzeszow, Poland; Department Chemistry, Institution Tomas Bata University in Zlin, CZ-762 72, Zlin, Czech Republic; Department Chemistry, Biological and Chemical Research Centre, Institution University of Warsaw, Żwirki i Wigury 101, Warsaw, Poland
utb.fulltext.projects IGA/FT/2017/005
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam