Publikace UTB
Repozitář publikační činnosti UTB

Processing of MIM feedstocks based on Inconel 718 powder and partially water-soluble binder varying in PEG molecular weight

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Processing of MIM feedstocks based on Inconel 718 powder and partially water-soluble binder varying in PEG molecular weight en
dc.contributor.author Hnátková, Eva
dc.contributor.author Hausnerová, Berenika
dc.contributor.author Hales, Andrew
dc.contributor.author Jiránek, Lukáš
dc.contributor.author Derguti, Fatos
dc.contributor.author Todd, Iain
dc.relation.ispartof Powder Technology
dc.identifier.issn 0032-5910 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 322
dc.citation.spage 439
dc.citation.epage 446
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.powtec.2017.09.029
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S003259101730760X
dc.subject molecular weight en
dc.subject polyethylene glycol en
dc.subject metal injection molding en
dc.subject rheological properties en
dc.subject debinding en
dc.subject mechanical properties en
dc.description.abstract This paper deals with a complex characterization of metal injection molding (MIM) feedstocks based on Inconel 718 powder and partially water-soluble binder systems. Polyethylene glycol (PEG) is a well-known component in design of feedstock formulations due to its low viscosity, solubility in the water, eco-friendly nature and commercial availability. The main objective of this paper is to investigate the influence of PEG molecular weight on overall MIM process chain including its eventual impact on final mechanical properties. For this purpose, 7 feedstocks with a fixed amount of powder loading (59 vol%) and the binder composition differing in molecular weight of PEG (in a range from 1500 to 20,000 g/mol) were investigated. The PEG molecular weight was found to have the considerable impact on the feedstock moldability and debinding kinetics. © 2017 Elsevier B.V. en
utb.faculty Faculty of Technology
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007495
utb.identifier.obdid 43877093
utb.identifier.scopus 2-s2.0-85029892153
utb.identifier.wok 000413880100045
utb.identifier.coden POTEB
utb.source j-scopus
dc.date.accessioned 2017-10-16T14:43:39Z
dc.date.available 2017-10-16T14:43:39Z
dc.description.sponsorship LO1504, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Hnátková, Eva
utb.contributor.internalauthor Hausnerová, Berenika
utb.fulltext.affiliation Eva Hnatkova a,b , Berenika Hausnerova a,b, ⁎ , Andrew Hales c , Lukas Jiranek d , Fatos Derguti c , Iain Todd c a Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic b Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic c The University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom d Beckett MIM, Tinsley Industrial Park Shepcote Way Sheffield, S9 1TH, United Kingdom ⁎ Corresponding author. E-mail address: hausnerova@ft.utb.cz (B. Hausnerova).
utb.fulltext.dates Received 12 May 2017 Received in revised form 3 August 2017 Accepted 17 September 2017 Available online 21 September 2017
utb.fulltext.references [1] R.M. German, A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, 1997. [2] D.F. Heaney, Handbook of Metal Injection Molding, Woodhead Publishing, Cambridge, 2012. [3] G. Wen, P. Cao, B. Gabbitas, D. Zhang, N. Edmonds, Development and design of binder systems for titanium metal injection molding: an overview, Metall. Mater. Trans. A 44 (2013) 1530–1547. [4] J.M. Harris, Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical ApplicationsSpringer Science & Business Media 2013. [5] M.Y. Cao, J.W. O'Connor, C.I. Chung, A new water soluble solid polymer solution binder for powder injection molding, Powder Injection Molding Symposium 1992 (1992) 85–98. [6] K.F. Hens, R.M. German, Advanced processing of advanced materials via powder injection, Adv. Powder Met. 5 (1993) 153–164. [7] W.W. Yang, M.H. Hon, In situ evaluation of dimensional variations during water extraction from alumina injection-moulded parts, J. Eur. Ceram. Soc. 20 (2000) 851–858. [8] A.T. Sidambe, I.A. Figueroa, H.G.C. Hamilton, I. Todd, Metal injection moulding of CP-Ti components for biomedical applications, J. Mater. Process. Technol. 212 (2012) 1591–1597. [9] J. Hidalgo, C. Abajo, A. Jiménez-Morales, J.M. Torralba, Effect of a binder system on the low-pressure powder injection moulding of water-soluble zircon feedstocks, J. Eur. Ceram. Soc. 33 (2013) 3185–3194. [10] A. Royer, T. Barriere, J.C. Gelin, The degradation of poly (ethylene glycol) in an Inconel 718 feedstock in the metal injection moulding process, Powder Technol. 284 (2015) 467–474. [11] W. Liu, X. Yang, Z. Xie, C. Jia, L. Wang, Novel fabrication of injection-moulded ceramic parts with large section via partially water-debinding method, J. Eur. Ceram. Soc. 32 (2012) 2187–2191. [12] W.W. Yang, K.-Y. Yang, M.-H. Hon, Effects of PEG molecular weights on rheological behaviour of alumina injection molding feedstock, Mater. Chem. Phys. 78 (2002) 416–424. [13] M.D. Hayat, G. Wen, M.F. Zulkifli, P. Cao, Effect of PEG molecular weight on rheological properties of Ti-MIM feedstocks and water debinding behavior, Powder Technol. 270 (2015) 296–301. [14] Ö. Özgün, H.Ö. Gülsoy, R. Yılmaz, F. Fındık, Microstructural and mechanical characterization of injection molded 718 superalloy powders, J. Alloys Compounds 576 (2013) 140–153. [15] T.M. Pollock, T. Sammy, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propuls. Power 22 (2006) 361–374. [16] E. Hnatkova, B. Hausnerova, A. Hales, L. Jiranek, J.M. Alcon, Rheological investigation of highly filled polymers: effect of molecular weight, AIP Conference Proceedings 1662 (2015), 040003. [17] J.P. Choi, H.G. Lyu, W.S. Lee, J.S. Lee, Investigation of the rheological behavior of 316L stainless steel micro-nano powder feedstock for micro powder injection molding, Powder Technol. 261 (2014) 201–209. [18] B. Hausnerova, Rheological characterization of powder injection molding compounds, Polimery 55 (2010) 3–11. [19] B. Hausnerova, Powder Injection Moulding - an Alternative Processing Method for Automotive Items, InTech, 2011. [20] K.H. Kate, R.K. Enneti, S.J. Park, R.M. German, S.V. Atre, Predicting powder-polymer mixture properties for PIM design, Crit. Rev. Solid State 39 (2014) 197–214. [21] Z.Y. Liu, N.H. Loh, S.B. Tor, K.A. Khor, Characterization of powder injection molding feedstock, Mater. Charact. 49 (2002) 313–320. [22] W.K. You, J.P. Choi, S.M. Yoon, J.S. Lee, Low temperature powder injection molding of iron micro-nano powder mixture, Powder Technol. 228 (2012) 199–205. [23] A. Hales, Metal Injection Moulding of Inconel 718 Using a Water Soluble Binder SystemThesis University of Sheffield, Sheffield, UK, 2015. [24] P. Dvorak, T. Barriere, J.C. Gelin, Jetting in metal injection moulding of 316L stainless steel, Powder Metall. 48 (2005) 254–260. [25] G. Thavanayagam, K.L. Pickering, J.E. Swan, P. Cao, Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding, Powder Technol. 269 (2015) 227–232. [26] L. Feng, J. Zheng, H. Yang, Y. Guo, W. Li, X. Li, Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Sol. Energy Mater. Sol. C. 95 (2011) 644–650. [27] A.V. Shenoy, Rheology of Filled Polymer Systems, Kluwer Academic Publisher, London, 1999. [28] D.R. Saini, A.V. Shenoy, V.M. Nadkarni, Melt rheology of highly loaded ferrite-filled polymer composites, Polym. Compos. 7 (1986) 193–200. [29] N. Chuankrerkkul, P.F. Messer, H.A. Davies, Flow and void formation in powder injection moulding feedstocks made with PEG/PMMA binders part 1–experimental observations, Powder Metall. 51 (2008) 66–71. [30] N. Chuankrerkkul, P.F. Messer, H.A. Davies, Flow and void formation in powder injection moulding feedstocks made with PEG/PMMA binders part 2–slip band model, Powder Metall. 51 (2008) 72–77. [31] M.S. Park, J.K. Kim, S. Ahn, H.J. Sung, Water-soluble binder of cellulose acetate butyrate/poly (ethylene glycol) blend for powder injection molding, J. Mater. Sci. 36 (2001) 5531–5536. [32] A.T. Sidambe, F. Derguti, A.D. Russell, I. Todd, Influence of processing on the properties of IN718 parts produced via metal injection moulding, PIM Int. 7 (2013) 81–85.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).
utb.wos.affiliation [Hnatkova, Eva; Hausnerova, Berenika] Tomas Bata Univ Zlin, Fac Technol, Dept Prod Engn, Nam TG Masaryka 5555, Zlin 76001, Czech Republic; [Hnatkova, Eva; Hausnerova, Berenika] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Hales, Andrew; Derguti, Fatos; Todd, Iain] Univ Sheffield, Dept Mat Sci & Engn, Sir Robert Hadfield Bldg,Mappin St, Sheffield S1 3JD, S Yorkshire, England; [Jiranek, Lukas] Beckett MIM, Tinsley Ind Pk Shepcote Way, Sheffield S9 1TH, S Yorkshire, England
utb.scopus.affiliation Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, Zlín, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tř. Tomáše Bati 5678, Zlín, Czech Republic; The University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, United Kingdom
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam