TBU Publications
Repository of TBU Publications

PH-switchable interaction of a carboxybetaine ester-based SAM with DNA and gold nanoparticles

DSpace Repository

Show simple item record

dc.title PH-switchable interaction of a carboxybetaine ester-based SAM with DNA and gold nanoparticles en
dc.contributor.author Filip, Jaroslav
dc.contributor.author Popelka, Anton
dc.contributor.author Bertók, Tomáš
dc.contributor.author Holazová, Alena
dc.contributor.author Osička, Josef
dc.contributor.author Kollár, Jozef
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Tkáč, Ján
dc.contributor.author Kasák, Peter
dc.relation.ispartof Langmuir
dc.identifier.issn 0743-7463 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 33
utb.relation.issue 27
dc.citation.spage 6657
dc.citation.epage 6666
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acs.langmuir.7b00568
dc.relation.uri http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b00568
dc.description.abstract We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples. © 2017 American Chemical Society. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007211
utb.identifier.obdid 43876732
utb.identifier.scopus 2-s2.0-85022336693
utb.identifier.wok 000405536100003
utb.identifier.coden LANGD
utb.source j-scopus
dc.date.accessioned 2017-09-03T21:40:01Z
dc.date.available 2017-09-03T21:40:01Z
dc.description.sponsorship NPRP from Qatar National Research Fund [NPRP-6-381-1-078]
utb.contributor.internalauthor Filip, Jaroslav
utb.fulltext.affiliation Jaroslav Filip, †,‡ Anton Popelka, † Tomas Bertok, § Alena Holazova, § Josef Osicka, † Jozef Kollar, ∥ Marketa Ilcikova, † Jan Tkac, § and Peter Kasak* ,† † Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar ‡ Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 76001 Zlín, Czech Republic § Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravská cesta 9, 842 36 Bratislava, Slovak Republic ∥ Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic AUTHOR INFORMATION Corresponding Author *E-mail: peter.kasak@qu.edu.qa. ORCID Jan Tkac: 0000-0002-0765-7262 Peter Kasak: 0000-0003-4557-1408
utb.fulltext.dates Received: February 19, 2017 Revised: June 16, 2017 Published: June 19, 2017
utb.fulltext.references (1) DeMuth, P. C.; Min, Y.; Huang, B.; Kramer, J. A.; Miller, A. D.; Barouch, D. H.; Hammond, P. T.; Irvine, D. J. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 2013, 12, 367−376. (2) Klugherz, B. D.; Jones, P. L.; Cui, X.; Chen, W.; Meneveau, N. F.; DeFelice, S.; Connolly, J.; Wilensky, R. L.; Levy, R. J. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotechnol. 2000, 18, 1181−1184. (3) Jewell, C. M.; Lynn, D. M. Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv. Drug Delivery Rev. 2008, 60, 979−999. (4) Singh, V.; Zharnikov, M.; Gulino, A.; Gupta, T. DNA immobilization, delivery and cleavage on solid supports. J. Mater. Chem. 2011, 21, 10602−10618. (5) Li, P. C., Sedighi, A.; Wang, L., Eds.; Microarray Technology: Methods and Applications; Methods in Molecular Biology; Humana Press, 2016; Vol. 1368. (6) Li, X.; Quigg, R. J.; Zhou, J.; Gu, W.; Rao, R. N.; Reed, E. F. Clinical Utility of Microarrays: Current Status, Existing Challenges and Future Outlook. Curr. Genomics 2008, 9, 466−474. (7) Ge, D.; Wang, X.; Williams, K.; Levicky, R. Thermostable DNA Immobilization and Temperature Effects on Surface Hybridization. Langmuir 2012, 28, 8446−8455. (8) Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7297−7301. (9) Thomas, T. J.; Tajmir-Riahi, H. A.; Thomas, T. Polyamine−DNA interactions and development of gene delivery vehicles. Amino Acids 2016, 48, 2423−2431. (10) Demeneix, B.; Hassani, Z.; Behr, J. P. Towards multifunctional synthetic vectors. Curr. Gene Ther. 2004, 4, 445−455. (11) Vázques, E.; Dewitt, D. M.; Hammond, P. T.; Lynn, D. M. Construction of Hydrolytically-Degradable Thin Films via Layer-by-Layer Deposition of Degadable Polyelectrolytes. J. Am. Chem. Soc. 2002, 124, 13992−13993. (12) Bishop, C. J.; Tzeng, S. Y.; Green, J. J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater. 2015, 11, 393−403. (13) Taori, V. P.; Liu, Y.; Reineke, T. M. DNA delivery in vitro via surface release from multilayer assemblies with poly-(glycoamidoamine)s. Acta Biomater. 2009, 5, 925−933. (14) Dreaden, E. C.; Austin, L. A.; Mackey, M. A.; El-Sayed, M. A. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Delivery 2012, 3, 457−478. (15) Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740−2779. (16) Soenen, S. J.; Parak, W. J.; Rejman, J.; Manshian, B. (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chem. Rev. 2015, 115, 2109−2135. (17) Shah, M.; Badwaik, V. D.; Dakshinamurthy, R. Biological Applications of Gold Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 344−362. (18) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103−1169. (19) Lee, I. Molecular Self-Assembly: Smart Design of Surface and Interface via Secondary Molecular Interactions. Langmuir 2013, 29, 2476−2489. (20) Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M. Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 2000, 122, 8303−8304. (21) Jiang, S. Y.; Cao, Z. Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920−932. (22) Ilcikova, M.; Tkac, J.; Kasak, P. Switchable materials containing polyzwitterion moieties. Polymers 2015, 7, 2344−2370. (23) Mi, L.; Jiang, S. Y. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew. Chem., Int. Ed. 2014, 53, 1746−1754. (24) Zhang, Z.; Cheng, G.; Carr, L. R.; Vaisocherova, H.; Chen, S.; Jiang, S. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 2008, 29, 4719−4725. (25) Cao, B.; Tang, Q.; Li, L. L.; Humble, J.; Wu, H. Y.; Liu, L. Y.; Cheng, G. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv. Healthcare Mater. 2013, 2, 1096−1102. (26) Cao, Z. Q.; Mi, L.; Mendiola, J.; Ella-Menye, J. R.; Zhang, L.; Xue, H.; Jiang, S. Y. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem., Int. Ed. 2012, 51, 2602−2605. (27) Cao, B.; Li, L. L.; Tang, Q.; Cheng, G. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials 2013, 34, 7592−7600. (28) Sobolčiak, P.; Špírek, M.; Katrlík, J.; Gemeiner, P.; Lacík, I.; Kasák, P. Light-Switchable Polymer from Cationic to Zwitterionic Form: Synthesis, Characterization, and Interactions with DNA and Bacterial Cells. Macromol. Rapid Commun. 2013, 34, 635−639. (29) Sinclair, A.; Bai, T.; Carr, L. R.; Ella-Menye, J.-R.; Zhang, L.; Jiang, S. Engineering buffering and hydrolytic or photolabile charge shifting in a polycarboxybetaine ester gene delivery platform. Biomacromolecules 2013, 14, 1587−1593. (30) Sin, M.-C.; Chen, S.-H.; Chang, Y. Hemocompatibility of zwitterionic interfaces and membranes. Polym. J. 2014, 46, 436−443. (31) García, K. P.; Zarschler, K.; Barbaro, L.; Barreto, J. A.; O’Malley, W.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic-Coated ′′Stealth′′ Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake by the Mononuclear Phagocyte System. Small 2014, 10, 2516−2529. (32) Yang, W.; Xue, H.; Jiang, S. Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 2009, 25, 11911−11916. (33) Bertok, T.; Sediva, A.; Filip, J.; Ilcikova, M.; Kasak, P.; Velic, D.; Jane, E.; Mravcová, M.; Rovenský , J.; Kunzo, P.; Lobotka, P.; Smatko, V.; Vikartovska, A.; Tkac, J. Carboxybetaine interface for electrochemical glycoprofiling of antibodies isolated from human serum. Langmuir 2015, 31, 7148−7157. (34) Zhang, Z.; Chen, S.; Jiang, S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 2006, 7, 3311−3315. (35) Liu, X.; Huang, H.; Jin, Q.; Ji, J. Mixed Charged Zwitterionic Self-assembled Monolayers As A Facile Way To Stabilize Large Gold Nanoparticles. Langmuir 2011, 27, 5242−5251. (36) Tkac, J.; Davis, J. An optimized electrode pre-treatment for SAM formation on polycrystalline gold. J. Electroanal. Chem. 2008, 621, 117−120. (37) Bertok, T.; Klukova, L.; Sediva, A.; Kasak, P.; Semak, V.; Micusik, M.; Omastova, M.; L. Chovanová, L.; Vlček, M.; Imrich, R.; Vikartovska, A.; Tkác , ̌ J. Ultrasensitive Impedimetric Lectin Biosensors with Efficient Antifouling Properties Applied in Glycoprofiling of Human Serum Samples. Anal. Chem. 2013, 85, 7324−7332. (38) Love, J.; Estroff, L.; Kriebel, J.; Nuzzo, R.; Whitesides, G. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103−1169. (39) Herrwerth, S.; Eck, W.; Reinhardt, S.; Grunze, M. Factors that Determine the Protein Resistance of Oligoether Self-Assembled Monolayers − Internal Hydrophilicity, Terminal Hydrophilicity, and Lateral Packing Density. J. Am. Chem. Soc. 2003, 125, 9359−9366. (40) Osicka, J.; Ilcikova, M.; Popelka, A.; Filip, J.; Bertok, T.; Tkac, J.; Kasak, P. Simple, reversible and fast modulation in superwettability, gradient and adsorption by counterion exchange on self-assembled monolayer. Langmuir 2016, 32, 5491−5499. (41) Ivashenko, O.; van Herpt, J. T.; Feringa, B. L.; Rudolf, P.; Browne, W. R. Electrochemical write and read functionality through oxidative dimerization of spiropyran self-assembled monolayers on gold. J. Phys. Chem. C 2013, 117, 18567−18577. (42) Li, J.; Ding, L.; Wang, E.; Dong, S. Interfacial characteristics of the self-assembly system of poly-L-lysinel3-mercaptopropionic acid-lgold electrode. J. Electroanal. Chem. 1997, 431, 227−230. (43) Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 1987, 109, 3559−3568. (44) Ainalem, M.-L.; Kristen, N.; Edler, K. J.; Höök, F.; Sparr, E.; Nylander, T. DNA Binding to Zwitterionic Model Membranes. Langmuir 2010, 26, 4965−4976. (45) Dabkowska, A. P.; Michanek, A.; Jaeger, L.; Rabe, M.; Chworos, A.; Höök, F.; Nylander, T.; Sparr, E. Assembly of RNA nanostructures on supported lipid bilayers. Nanoscale 2015, 7, 583−596. (46) Li, X.; Jin, H.; Wu, Z.; Rayner, S.; Wang, B. A continuous process to extract plasmid DNA based on alkaline lysis. Nat. Protoc. 2008, 3, 176−180. (47) Abraham, S.; Unsworth, L. D. Multi-functional initiator and poly(carboxybetaine methacrylamides) for building biocompatible surfaces using “nitroxide mediated free radical polymerization” strategies. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1051−1060. (48) Rodriguez Emmenegger, C.; Brynda, E.; Riedel, T.; Sedlakova, Z.; Houska, M.; Alles, A. B. Interaction of blood plasma with antifouling surfaces. Langmuir 2009, 25, 6328−6333. (49) Rei Vilar, M.; Botelho do Rego, A. M.; Ferraria, A. M.; Jugnet, Y.; Nogue, C.; Peled, D.; Naaman, R. Interaction of Self-Assembled Monolayers of DNA with Electrons: HREELS and XPS Studies. J. Phys. Chem. B 2008, 112, 6957−6964. (50) Petrovykh, D. Y.; Kimura-Suda, H.; Whitman, L. J.; Tarlov, M. J. Quantitative analysis and characterization of DNA immobilized on gold. J. Am. Chem. Soc. 2003, 125, 5219−5226. (51) Ishida, T.; Choi, N.; Mizutani, W.; Tokumoto, H.; Kojima, I.; Azehara, H.; Hokari, H.; Akiba, U.; Fujihira, M. High-Resolution X-ray Photoelectron Spectra of Organosulfur Monolayers on Au(111): S(2p) Spectral Dependence on Molecular Species. Langmuir 1999, 15, 6799−6809. (52) Walker, D. A.; Leitsch, E. K.; Nap, R. J.; Szleifer, I.; Grzybowski, B. A. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nat. Nanotechnol. 2013, 8, 676−681. (53) Li, N.; Thia, L.; Wang, X. A CO 2 -responsive surface with an amidine-terminated self-assembled monolayer for stimuli-induced selective adsorption. Chem. Commun. 2014, 50, 4003−4006. (54) Yoo, S. M.; Lee, S. Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7−25. (55) Dosekova, E.; Filip, J.; Bertok, T.; Both, P.; Kasak, P.; Tkac, J. Nanotechnology in glycomics. Applications in diagnostics, therapy, imaging and separation processes. Med. Res. Rev. 2017, 37, 514. (56) Kravets, V.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R.; Ansell, D.; Thackray, B.; Novoselov, K.; Geim, A.; Kabashin, A.; et al. Singular Phase Nano-Optics In Plasmonic Metamaterials For Label-Free Single-Molecule Detection. Nat. Mater. 2013, 12, 304−309. (57) Shen, C.-H.; Lin, J.-C. Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids Surf., B 2013, 101, 376−383. (58) Chen, S.; Zheng, J.; Li, L.; Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005, 127, 14473−14478. (59) Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M. Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17, 2841−2850. (60) Jolly, P.; Formisano, N.; Tkác , ̌ J.; Kasák, P.; Frost, C. G.; Estrela, P. Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sens. Actuators, B 2015, 209, 306−312. (61) Lowe, S.; O'Brien-Simpson, N. M.; Connal, L. A. Antibiofouling polymer interfaces: poly(ethyleneglycol) and other promising candidates. Polym. Chem. 2015, 6, 198−212. (62) Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008, 9, 1357−1361.
utb.fulltext.sponsorship The authors gratefully acknowledge Mr. Ahmed Suliman, Gas Processing Center, Qatar University, for carrying out the XPS analysis. This publication was made possible by NPRP grant no. NPRP-6-381-1-078 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.
utb.scopus.affiliation Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlín, Czech Republic; Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, Slovakia; Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
Find Full text

Files in this item

Show simple item record