TBU Publications
Repository of TBU Publications

Spectral abscissa minimization when algebraic control of unstable LTI-TDS

DSpace Repository

Show simple item record

dc.title Spectral abscissa minimization when algebraic control of unstable LTI-TDS en
dc.contributor.author Pekař, Libor
dc.contributor.author Prokop, Roman
dc.contributor.author Navrátil, Pavel
dc.relation.ispartof IFAC Proceedings Volumes (IFAC-PapersOnline)
dc.identifier.issn 1474-6670 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 9783902823182
dc.date.issued 2012
utb.relation.volume 2
utb.relation.issue PART 1
dc.citation.spage 382
dc.citation.epage 387
dc.event.title 2nd IFAC Conference on Advances in PID Control, PID 2012
dc.event.location Brescia
utb.event.state-en Italy
utb.event.state-cs Itálie
dc.event.sdate 2012-03-28
dc.event.edate 2012-03-30
dc.type conferenceObject
dc.language.iso en
dc.subject Algebraic approaches en
dc.subject Minimization en
dc.subject Numerical methods en
dc.subject Parameters optimization en
dc.subject Pole assignment en
dc.subject Time delay en
dc.description.abstract Optimal pole assignment minimizing the spectral abscissa when algebraic control of linear time-invariant time delay systems (LTI-TDS) is focused in this paper. We concentrate on algebraic controller design approach in the RMS ring resulting in delayed controllers as well. In the case of unstable delayed plants, the use a simple feedback loop results in a characteristic quasipolynomial instead of polynomial is obtained which means that the closed loop has an infinite spectrum. Thus, it is not possible to place all feedback poles to the prescribed positions exactly by a finite number of free controller parameters. The pole placement problem is translated to the minimization of the spectral abscissa which is a nonsmooth nonconvex function of free parameters in many cases. We initially solve the problem via standard quasi-continuous shifting algorithm followed by a comparative utilization of three iterative optimization algorithms; namely, Nelder-Mead algorithm, Extended Gradient Sampling Algorithm and Self-Organizing Migration Algorithm. Simulation control of an unstable LTI-TDS - the roller skater on the swaying bow - serves as an illustrative example for the algebraic control with the spectral abscissa minimization. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1004688
utb.identifier.obdid 43868701
utb.identifier.scopus 2-s2.0-84880914206
utb.source d-scopus
dc.date.accessioned 2015-06-04T12:54:58Z
dc.date.available 2015-06-04T12:54:58Z
utb.contributor.internalauthor Pekař, Libor
utb.contributor.internalauthor Prokop, Roman
utb.contributor.internalauthor Navrátil, Pavel
Find Full text

Files in this item

Show simple item record