TBU Publications
Repository of TBU Publications

Algebraic optimal control in RMS ring: A case study

DSpace Repository

Show simple item record


dc.title Algebraic optimal control in RMS ring: A case study en
dc.contributor.author Pekař, Libor
dc.contributor.author Prokop, Roman
dc.relation.ispartof International Journal of Mathematics and Computers in Simulation
dc.identifier.issn 1998-0159 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2013
utb.relation.volume 7
utb.relation.issue 1
dc.citation.spage 59
dc.citation.epage 68
dc.type article
dc.language.iso en
dc.publisher North Atlantic University Union (NAUN) en
dc.relation.uri http://www.naun.org/multimedia/NAUN/mcs/16-645.pdf
dc.subject Artificial intelligence en
dc.subject Iterative algorithms en
dc.subject Optimization en
dc.subject Pole placement en
dc.subject Spectral abscissa en
dc.subject Time-delay systems en
dc.description.abstract In [1], [2] some basic and detailed ideas, respectively, of algebraic controller design in the ring or quasipolynomial meromorphic functions (RMS) with optimal controller tuning via spectral abscissa minimization using some advanced iterative algorithms were presented and introduced. The aim of this paper is to follow with these theoretic contributions in order to examine and verify the usability and applicability of the whole methodology. A case study of controller design, tuning and simulation of a mathematical model of a real-life unstable time-delay system (TDS), namely, the roller skater on the controlled swaying bow is presented. Four introduced iterative optimization algorithms are tested and benchmarked. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1003093
utb.identifier.obdid 43869901
utb.identifier.scopus 2-s2.0-84872137033
utb.source j-scopus
dc.date.accessioned 2013-02-02T01:12:49Z
dc.date.available 2013-02-02T01:12:49Z
utb.contributor.internalauthor Pekař, Libor
utb.contributor.internalauthor Prokop, Roman
Find Full text

Files in this item

Show simple item record