Publikace UTB
Repozitář publikační činnosti UTB

Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars en
dc.contributor.author Sochor, Jiří
dc.contributor.author Škutková, Helena
dc.contributor.author Babula, Petr
dc.contributor.author Zítka, Ondřej
dc.contributor.author Cernei, Natalia
dc.contributor.author Rop, Otakar
dc.contributor.author Krška, Boris
dc.contributor.author Adam, Vojtěch
dc.contributor.author Provazník, Ivo
dc.contributor.author Kizek, René
dc.relation.ispartof Molecules
dc.identifier.issn 1420-3049 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2011
utb.relation.volume 16
utb.relation.issue 9
dc.citation.spage 7428
dc.citation.epage 7457
dc.type article
dc.language.iso en
dc.publisher MDPI AG en
dc.identifier.doi 10.3390/molecules16097428
dc.relation.uri http://www.mdpi.com/1420-3049/16/9/7428/
dc.subject amino acids en
dc.subject antioxidant activity en
dc.subject apricot en
dc.subject polyphenolics en
dc.subject statistical analysis en
dc.description.abstract Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed. © 2011 by The Authors. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1002656
utb.identifier.rivid RIV/70883521:28110/11:43865587!RIV12-MSM-28110___
utb.identifier.obdid 43865599
utb.identifier.scopus 2-s2.0-80053290789
utb.identifier.wok 000295211000020
utb.identifier.coden MOLEF
utb.source j-scopus
dc.date.accessioned 2012-02-10T13:15:25Z
dc.date.available 2012-02-10T13:15:25Z
dc.rights Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/3.0/
dc.rights.access openAccess
utb.contributor.internalauthor Rop, Otakar
utb.fulltext.affiliation Jiri Sochor 1, Helena Skutkova 2, Petr Babula 1, Ondrej Zitka 1, Natalia Cernei 1, Otakar Rop 3, Boris Krska 4, Vojtech Adam 1,5, Ivo Provazník 2 and Rene Kizek 1,5,* 1 Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic 2 Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Kolejni 4, CZ-612 00 Brno, Czech Republic 3 Department of Food Technology and Microbiology, Faculty of Technology, Tomas Bata University in Zlin, Namesti T. G. Masaryka 275, CZ-762 72 Zlin, Czech Republic 4 Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic 5 Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic * Author to whom correspondence should be addressed; E-Mail: kizek@sci.muni.cz;Tel.: +420-5-4513-3350; Fax: +420-5-4521-2044.
utb.fulltext.dates Received: 10 August 2011 Accepted: 17 August 2011 Published: 1 September 2011
utb.fulltext.references 1. Gazdik, Z.; Reznicek, V.; Adam, V.; Zitka, O.; Jurikova, T.; Krska, B.; Matuskovic, J.; Plsek, J.; Saloun, J.; Horna, A.; et al. Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits. Molecules 2008, 13, 2823-2836. 2. Henriquez, C.; Almonacid, S.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Cabezas, L.; Simpson, R.; Speisky, H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agric. Res. 2010, 70, 523-536. 3. Matsusaka, Y.; Kawabata, J. Evaluation of antioxidant capacity of non-edible parts of some selected tropical fruits. Food Sci. Technol. Res. 2010, 16, 467-472. 4. Rop, O.; Mlcek, J.; Kramarova, D.; Jurikova, T. Selected cultivars of cornelian cherry (cornus mas l.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205-1210. 5. Simirgiotis, M.J.; Schmeda-Hirschmann, G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. Chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010, 23, 545-553. 6. Ahn, D.; Putt, D.; Kresty, L.; Stoner, G.D.; Fromm, D.; Hollenberg, P.F. The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and Phase Ⅱ enzymes. Carcinogenesis 1996, 17, 821-828. 7. Bagchi, D.; Garg, A.; Krohn, R.L.; Bagchi, M.; Tran, M.X.; Stohs, S.J. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 1997, 95, 179-189. 8. Park, O.J.; Surh, Y.J. Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicol. Lett. 2004, 150, 43-56. 9. Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2005, 579, 200-213. 10. Surh, Y.J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1999, 428, 305-327. 11. Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Downregulation of cox-2 and inos through suppression of nf-kappa b activation. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001, 480, 243-268. 12. Park, H.J.; DiNatale, D.A.; Chung, M.Y.; Park, Y.K.; Lee, J.Y.; Koo, S.I.; O’Connor, M.; Manautou, J.E.; Bruno, R.S. Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem. 2011, 22, 393-400. 13. Buchner, F.L.; Bueno-de-Mesquita, H.B.; Linseisen, J.; Boshuizen, H.C.; Kiemeney, L.; Ros, M.M.; Overvad, K.; Hansen, L.; Tjonneland, A.; Raaschou-Nielsen, O.; et al. Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the european prospective investigation into cancer and nutrition (epic). Cancer Causes Control 2010, 21, 357-371. 14. Buchner, F.L.; Bueno-de-Mesquita, H.B.; Ros, M.M.; Overvad, K.; Dahm, C.C.; Hansen, L.; Tjonneland, A.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Touillaud, M.; et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the european prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2278-2286. 15. Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899-920. 16. Lowik, M.R.H.; Hulshof, K.; Brussaard, J.H. Patterns of food and nutrient intakes of dutch adults according to intakes of total fat, saturated fatty acids, dietary fibre, and of fruit and vegetables. Br. J. Nutr. 1999, 81, S91-S98. 17. Boutry, C.; Bos, C.; Tome, D. Amino acid requirements. Nutr. Clin. Metab. 2008, 22, 151-160. 18. Reeds, P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000, 130, 1835S-1840S. 19. Markus, C.R. Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol. Med. 2008, 10, 247-258. 20. Vieillevoye, S.; Poortmans, J.R.; Duchateau, J.; Carpentier, A. Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training. Eur. J. Appl. Physiol. 2010, 110, 479-488. 21. Nishiwaki, T.; Hayashi, K. Purification and characterization of an aminopeptidase from the edible basidiomycete grifola frondosa. Biosci. Biotechnol. Biochem. 2001, 65, 424-427. 22. Konic-Ristic, A.; Savikin, K.; Zdunic, G.; Jankovic, T.; Juranic, Z.; Menkovic, N.; Stankovic, I. Biological activity and chemical composition of different berry juices. Food Chem. 2010, 125, 1412-1417. 23. Sun, J.; Chu, Y.F.; Wu, X.Z.; Liu, R.H. Antioxidant and anti proliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449-7454. 24. Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of five different stages of ripening on chemical compounds in medlar (mespilus germanica l.). Molecules 2011, 16, 74-91. 25. Malik, S.K.; Chaudhury, R.; Dhariwal, O.P.; Mir, S. Genetic diversity and traditional uses of wild apricot (prunus armeniaca l.) in high-altitude north-western himalayas of india. Plant Genet. Resour.-Charact. Util. 2010, 8, 249-257. 26. Bureau, S.; Renard, C.; Reich, M.; Ginies, C.; Audergon, J.M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci. Technol. 2009, 42, 372-377. 27. Bureau, S.; Ruiz, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.M.; Renard, C. Rapid and non-destructive analysis of apricot fruit quality using ft-near-infrared spectroscopy. Food Chem. 2009, 113, 1323-1328. 28. Ozsahin, A.D.; Yilmaz, O. Prunus armeniaca l. Cv. Hacihaliloglu fruits extracts prevent lipid peroxidation and protect the unsaturated fatty acids in the fenton reagent environment. Asian J. Chem. 2010, 22, 8022-8032. 29. Ihns, R.; Diamante, L.M.; Savage, G.P.; Vanhanen, L. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci. Technol. 2010, 46, 275-283. 30. Akin, E.B.; Karabulut, I.; Topcu, A. Some compositional properties of main malatya apricot (prunus armeniaca l.) varieties (vol 107, pg 939, 2008). Food Chem. 2009, 116, 819-819. 31. Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966-975. 32. Elsayed, A.S.; Luh, B.S. Polyphenolic compounds in canned apricots. J. Food Sci. 1965, 30, 1016-1020. 33. Hegedus, A.; Engel, R.; Abranko, L.; Balogh, E.; Blazovics, A.; Herman, R.; Halasz, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Banyai, E. Antioxidant and antiradical capacities in apricot (prunus armeniaca l.) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci. 2010, 75, C722-C730. 34. Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441-448. 35. Munzuroglu, O.; Karatas, F.; Geckil, H. The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chem. 2003, 83, 205-212. 36. Saracoglu, S.; Tuzen, M.; Soylak, M. Evaluation of trace element contents of dried apricot samples from turkey. J. Hazard. Mater. 2009, 167, 647-652. 37. Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Horna, A.; Adam, V.; Provaznik, I.; Kizek, R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules 2010, 15, 6285-6305. 38. Williams, B.L.; Wender, S.H. Isolation and identification of quercetin and isoquercetin from apricots (prunus-armeniaca). Arch. Biochem. Biophys. 1953, 43, 319-323. 39. Kafkas, E.; Son, L.; Kurkcuoglu, M.; Baser, K.H.C. Volatile compositions and some fruit characteristics of table apricot varieties from turkey. Chem. Nat. Compd. 2007, 43, 344-346. 40. Jimenez, J.B.; Orea, J.M.; Montero, C.; Urena, A.G.; Navas, E.; Slowing, K.; Gomez-Serranillos, M.P.; Carretero, E.; De Martinis, D. Resveratrol treatment controls microbial flora, prolongs shelf life, and preserves nutritional quality of fruit. J. Agric. Food Chem. 2005, 53, 1526-1530. 41. Ram, L.; Godara, R.K.; Sharma, R.K.; Siddique, S. Primary and secondary metabolite changes of kinnow mandarin fruits during different stages of maturity. J. Food Sci. Technol.-Mysore 2004, 41, 337-340. 42. Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744-1756. 43. Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985-1012. 44. Manning, K. Isolation of a set of ripening-related genes from strawberry: Their identification and possible relationship to fruit quality traits. Planta 1998, 205, 622-631. 45. Normanly, J. Auxin metabolism. Physiol. Plant. 1997, 100, 431-442. 46. Dicu, T.; Postescu, I.D.; Tatomir, C.; Tamas, M.; Dinu, A.; Cosma, C. A novel method to calculate the antioxidant parameters of the redox reaction between polyphenolic compounds and the stable dpph radical. Ital. J. Food Sci. 2010, 22, 330-336. 47. Muller, L.; Gnoyke, S.; Popken, A.M.; Bohm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 43, 992-999. 48. Papoutsis, A.J.; Lamore, S.D.; Wondrak, G.T.; Selmin, O.I.; Romagnolo, D.F. Resveratrol prevents epigenetic silencing of brca-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr. 2010, 140, 1607-1614. 49. Ullah, M.F.; Khan, M.W. Food as medicine: Potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev. 2008, 9, 187-195. 50. Gazdik, Z.; Krska, B.; Adam, V.; Saloun, J.; Pokorna, T.; Reznicek, V.; Horna, A.; Kizek, R. Electrochemical determination of the antioxidant potential of some less common fruit species. Sensors 2008, 8, 7564-7570. 51. Wang, H.; Cao, G.H.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701-705. 52. Hercberg, S.; Galan, P.; Preziosi, P.; Alfarez, M.J.; Vazquez, C. The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancers. Nutrition 1998, 14, 513-520. 53. Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D.; et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001, 134, 1106-1114. 54. Block, G.; Patterson, B.; Subar, A. Fruit, vegetables, and cancer prevention - a review of the epidemiologic evidence. Nutr. Cancer 1992, 18, 1-29. 55. Hertog, M.G.L.; BuenodeMesquita, H.B.; Fehily, A.M.; Sweetnam, P.M.; Elwood, P.C.; Kromhout, D. Fruit and vegetable consumption and cancer mortality in the caerphilly study. Cancer Epidemiol. Biomarkers Prev. 1996, 5, 673-677. 56. Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727-747. 57. Schlesier, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177-187. 58. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231-1237. 59. Adam, V.; Mikelova, R.; Hubalek, J.; Hanustiak, P.; Beklova, M.; Hodek, P.; Horna, A.; Trnkova, L.; Stiborova, M.; Zeman, L.; et al. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors 2007, 7, 2402-2418. 60. Rop, O.; Jurikova, T.; Mlcek, J.; Kramarova, D.; Sengee, Z. Antioxidant activity and selected nutritional values of plums (prunus domestica l.) typical of the white carpathian mountains. Sci. Hortic. 2009, 122, 545-549. 61. Sochor, J.; Salas, P.; Zehnalek, J.; Krska, B.; Adam, V.; Havel, L.; Kizek, R. An assay for spectrometric determination of antioxidant activity of a biological extract. Lis. Cukrov. Repar. 2010, 126, 416-417. 62. Rop, O.; Mlcek, J.; Jurikova, T.; Valsikova, M.; Sochor, J.; Rezniček, V.; Kramarova, J. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (aronia melanocarpa (michx.) elliot) cultivars. J. Med. Plants Res. 2010, 4, 2431-2437. 63. Al-Kandari, N.M.; Jolliffe, I.T. Variable selection and interpretation in correlation principal components. Environmetrics 2005, 16, 659-672. 64. Dudoit, S.; Fridlyand, J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002, 3, 1-21. 65. Ogasanovic, D. Amino Acids Content in the Fruit of Some Plum Cultivars and Hybrids. In Proceedings of the Eighth International Symposium on Plum and Prune Genetics, Breeding and Pomology; Vangdal, E., Sekse, L., Eds.; International Society Horticultural Science: Leuven, Belgium, 2007; pp. 353-356. 66. Keutgen, A.J.; Pawelzik, E. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under nacl salinity. Food Chem. 2008, 111, 642-647. 67. Gholami, M.; Coombe, B.G.; Robinson, S.R. Grapevine Phloem Sap Analysis: 1-sucrose, Amino Acids, Potassium Concentrations, Seasonal and Diurnal Patterns. In Viticulture - Living with Limitations, Reynolds, A.G.B.P.; Ed.; International Society Horticultural Science: Leuven, Belgium, 2004; pp. 143-153. 68. Hodisan, T.; Culea, M.; Cimpoiu, C.; Cot, A. A study on free aminoacids from plant extracts. Ii. Separation, identification and quantitative determination of the free aminoacids in fagus silvatica by liquid chromatography (lc) and gas chromatography (gc). Rev. Chim. 1998, 49, 393-397. 69. Biswas, K.M.; DeVido, D.R.; Dorsey, J.G. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J. Chromatogr. A 2003, 1000, 637-655. 70. Hodges, R.S.; Zhu, B.Y.; Zhou, N.E.; Mant, C.T. Reversed-phase liquid-chromatography as a useful probe of hydrophobic interactions involved in protein-folding and protein stability. J. Chromatogr. A 1994, 676, 3-15. 71. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933-956. 72. Fernandez, V.; Del Rio, V.; Pumarino, L.; Igartua, E.; Abadia, J.; Abadia, A. Foliar fertilization of peach (prunus persica (l.) batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci. Hortic. 2008, 117, 241-248. 73. Flodin, N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997, 16, 7-21. 74. Gilca, M.; Stoian, I.; Atanasiu, V.; Virgolici, B. The oxidative hypothesis of senescence. J. Postgrad. Med. 2007, 53, 207-213. 75. Ruiz, D.; Egea, J.; Gil, M.I.; Tomas-Barberan, F.A. Phytonutrient Content in New Apricot (prunus armeniaca l.) Varieties. In Proceedings of the Xiiith International Symposium on Apricot Breeding and Culture; Romojaro, F., Dicenta, F., MartinezGomez, P., Eds.; International Society Horticultural Science: Leuven, Belgium, 2006; pp. 363-367. 76. Teow, C.C.; Truong, V.D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829-838. 77. Wang, W.; Bostic, T.R.; Gu, L.W. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193-1198. 78. Ishiwata, K.; Yamaguchi, T.; Takamura, H.; Matoba, I. Dpph radical-scavenging activity and polyphenol content in dried fruits. Food Sci. Technol. Res. 2004, 10, 152-156. 79. Yigit, D.; Yigit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (prunus armeniaca l.) kernels. Braz. J. Med. Biol. Res. 2009, 42, 346-352. 80. Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Fuhrman, B.; Attias, J.; Volkova, N.; Hayek, T.; Aviram, M. Phenolic antioxidants and antiatherogenic effects of marula (sclerocarrya birrea subsp caffra) fruit juice in healthy humans. J. Agric. Food Chem. 2008, 56, 9884-9891. 81. Kuda, T.; Tsunekawa, M.; Goto, H.; Araki, Y. Antioxidant properties of four edible algae harvested in the noto peninsula, japan. J. Food Compos. Anal. 2005, 18, 625-633. 82. Ndhlala, A.R.; Kasiyamhuru, A.; Mupure, C.; Chitindingu, K.; Benhura, M.A.; Muchuweti, M. Phenolic composition of flacourtia indica, opuntia megacantha and sclerocarya birrea. Food Chem. 2007, 103, 82-87. 83. Martinez-Calvo, J.; Llacer, G.; Badenes, M.L. 'Rafel' and 'belgida', two apricot cultivars resistant to sharka. Hortscience 2010, 45, 1904-1905. 84. Schildberger, B. Assessment of the colonization of apricot trees by pseudomonas syringae. Mitt. Klosterneubg. 2010, 60, 214-215. 85. Liu, L.X.; Sun, Y.; Laura, T.; Liang, X.F.; Ye, H.; Zeng, X.X. Determination of polyphenolic content and antioxidant activity of kudingcha made from ilex kudingcha c.J. Tseng. Food Chem. 2009, 112, 35-41. 86. Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants, pt A, Academic Press Inc: San Diego, CA, USA, 1999; Volume 299, pp. 152-178. 87. Leccese, A.; Viti, R.; Bartolini, S. The effect of solvent extraction on antioxidant properties of apricot fruit. Cent. Eur. J. Biol. 2010, 6, 199-204. 88. Zitka, O.; Sochor, J.; Rop, O.; Skalickova, S.; Sobrova, P.; Zehnnalek, J.; Beklova, M.; Krska, B.; Adam, V.; Kizek, R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules 2011, 16, 2914-2936. 89. Sochor, J.; Ryvolova, M.; Krystofova, O.; Salas, P.; Hubalek, J.; Adam, V.; Trnkova, L.; Havel, L.; Beklova, M.; Zehnalek, J.; et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules 2010, 15, 8618-8641.
utb.fulltext.sponsorship Financial support from the grants NAZV QI 91A032, GACR 102/09/H083, MSM0021630513 and CEITEC CZ.1.05/1.1.00/02.0068 is highly acknowledged.
utb.fulltext.projects NAZV QI 91A032
utb.fulltext.projects GACR 102/09/H083
utb.fulltext.projects MSM0021630513
utb.fulltext.projects CZ.1.05/1.1.00/02.0068
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivs 3.0 Unported Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivs 3.0 Unported