TBU Publications
Repository of TBU Publications

Completely lattice L-ordered sets with and without L-equality

DSpace Repository

Show simple item record

dc.title Completely lattice L-ordered sets with and without L-equality en
dc.contributor.author Martinek, Pavel
dc.relation.ispartof Fuzzy Sets and Systems
dc.identifier.issn 0165-0114 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2011-03-16
utb.relation.volume 166
utb.relation.issue 1
dc.citation.spage 44
dc.citation.epage 55
dc.type article
dc.language.iso en
dc.publisher Elsevier Science B.V. en
dc.identifier.doi 10.1016/j.fss.2010.11.003
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0165011410004549
dc.subject Fuzzy equality en
dc.subject Fuzzy order en
dc.subject L-ordered set en
dc.subject Completely lattice L-ordered set en
dc.subject Down-L-set en
dc.subject Fuzzy concept lattice en
dc.subject Dedekind-MacNeille completion en
dc.description.abstract A relationship between L-order based on an L-equality and L-order based on crisp equality is explored in detail. This enables to clarify some properties of completely lattice L-ordered sets and generalize some related assertions. Namely, Belohlavek's main theorem of fuzzy concept lattices is generalized as well as his theorem dealing with Dedekind-MacNeille completion. Analogously, completion of an L-ordered set via completely lattice L-ordered set of all down-L-sets is described. (C) 2010 Elsevier B.V. All rights reserved. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1002168
utb.identifier.rivid RIV/70883521:28140/11:00001030!RIV12-MSM-28140___
utb.identifier.obdid 43865171
utb.identifier.scopus 2-s2.0-78751645865
utb.identifier.wok 000287544500002
utb.identifier.coden FSSYD
utb.source j-wok
dc.date.accessioned 2011-08-16T15:06:36Z
dc.date.available 2011-08-16T15:06:36Z
utb.contributor.internalauthor Martinek, Pavel
Find Full text

Files in this item

Show simple item record