TBU Publications
Repository of TBU Publications

Self-tuning control of nonlinear servo system: comparison of LQ and predictive approach

DSpace Repository

Show simple item record


dc.title Self-tuning control of nonlinear servo system: comparison of LQ and predictive approach en
dc.contributor.author Bobál, Vladimír
dc.contributor.author Kubalčík, Marek
dc.contributor.author Chalupa, Petr
dc.contributor.author Dostál, Petr
dc.relation.ispartof MED: 2009 17th Mediterranean Conference on Control & Automation, Vols 1-3
dc.identifier.isbn 978-1-4244-4684-1
dc.date.issued 2009
dc.citation.spage 240
dc.citation.epage 245
dc.event.title 17th Mediterranean Conference on Control and Automation
dc.event.location Thessaloniki
utb.event.state-en Greece
utb.event.state-cs Řecko
dc.event.sdate 2009-06-24
dc.event.edate 2009-06-26
dc.type conferenceObject
dc.language.iso en
dc.publisher The Institute of Electrical and Electronics Engineers (IEEE) en
dc.identifier.doi 10.1109/MED.2009.5164546
dc.relation.uri http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5164546
dc.subject Self-tuning control en
dc.subject LQ control en
dc.subject Predictive control en
dc.subject Nonlinear systems en
dc.subject Servo systems en
dc.subject Real-time control en
dc.description.abstract The majority of processes met in the industrial practice have stochastic characteristics and eventually they embody nonlinear behaviour. Traditional controllers with fixed parameters are often unsuitable for such processes because their parameters change. The changes of process parameters are caused by changes in the manufacturing process, in the nature of the input materials, fuel, machinery use (wear) etc. Fixed controllers cannot deal with this. One possible alternative for improving the quality of control for such processes is the use of adaptive control systems. Different approaches were proposed and utilized. One successful approach is represented by self-tuning controller (STC). This approach is also called system with indirect adaptation (with direct identification). The main idea of an STC is based on the combination of a recursive identification procedure and a selected controller synthesis. In this paper, the standard STC (non-predictive) approach is verified and compared with STC based on the Model Predictive Control (MPC). The verification of both methods was implemented by the real-time control of a highly nonlinear laboratory model, the DR300 Speed Control with Variable Load. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1001823
utb.identifier.rivid RIV/70883521:28140/09:63507941!RIV10-MSM-28140___
utb.identifier.obdid 43860669
utb.identifier.wok 000280699600042
utb.source d-wok
dc.date.accessioned 2011-08-09T07:34:02Z
dc.date.available 2011-08-09T07:34:02Z
utb.contributor.internalauthor Bobál, Vladimír
utb.contributor.internalauthor Kubalčík, Marek
utb.contributor.internalauthor Chalupa, Petr
utb.contributor.internalauthor Dostál, Petr
utb.fulltext.affiliation V. Bobál, M. Kubalčík, P. Chalupa and P. Dostál Vladimír Bobál, Marek Kubalčík, Petr Chalupa and Petr Dostál are with Tomas Bata University in Zlín, Faculty of Applied Informatics, Department of Process Control, Nad Stráněmi 4511, 760 05 Zlín 5, Czech Republic (corresponding author to provide phone: +420 57 6035197; fax: +420 57 6035279; e-mail: bobal@fai.utb.cz).
utb.fulltext.dates Manuscript received January 15, 2009.
utb.fulltext.references [1] K. J. Åström, and B. Wittenmark, Adaptive Control. Second edition Reading, Massachusets: Addison-Wesley Publishing Company, 1995. [2] R. Isermann, K. Lachmann and D. Matko, Adaptive Control Systems. Prentice Hall, Inc., Englewood Cliffs: New Jersey, 1991. [3] P. E. Welstead, and M. B. Zarrop, Self-Tuning Systems: Control and Signal Processing. John Wiley: Chichester, 1991. [4] I. D. Landau, R. Lozano, and M’Saad, Adaptive Control. SpringerVerlag: London, 1998. [5] V. Bobál, J. Böhm J. Fessl, and J. Macháček, Digital Self-tuning Controllers: Algorithms, Implementation and Applications. SpringerVerlag: London, 2005. [6] N. M. Filatov, and H. Unbehauen, Adaptive Dual Control. Theory and Application. Springer-Verlag: Berlin Heidelberg New York, 2004. [7] V. Bobál, P. Chalupa, J. Novák, and P. Dostál, “Adaptive Control of Nonlinear Servo System: Comparison of Standard and Dual Approaches,” in Proc. of the 26th IASTED International Conference on Modelling, Identification and Control, Innsbruck, Austria, 2007, pp. 414-419. [8] J. M. Maciejowski, Predictive Control with Constraints. Prentice Hall: London, 2002. [9] J. A. Rossiter, Model Based Predictive Control: A Practical Approach. CRC Press: Boca Raton, Florida, 2003. [10] E. F. Camacho and C. Bordons, Model Predictive Control. Second edition, Springer-Verlag: London, 2004. [11] J. Mikleš, and M. Fikar, Process Modelling, Optimisation and Control, Springer-Verlag: Berlin, 2008. [12] R. Kulhavý, “Restricted exponential forgetting in real time dentification,” Automatica, vol. 23, pp. 586-600, Mai 1987. [13] J. J. Roubal, P. Augusta, and V. Havlena, “A brief introduction to control design demonstrated on laboratory model servo DR300 – Amira,” Acta Electrotechnika et Informatica, vol. 5, pp. 1-6, April 2005. [14] R. E. Precup, Z. Preitl, and S. Preitl, “Iterative feedback tuning approach to development of PI-fuzzy controllers,” Proceedings of the IEEE Int. Conference FUZZ-IEEE 2007, London, 2007, pp. 1-6. [15] V. Bobál, and P. Chalupa, Self-tuning Controllers Simulink Library. Available: http://www.utb.cz/stctool/, 2003. [16] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control. Part I. The basic algorithm,” Automatica, vol. 23, pp. 137-148, February 1987. [17] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control. Part II. Extensions and interpretations”, Automatica, vol. 23 pp. 149-160, February 1987.
utb.fulltext.sponsorship This work was supported in part by the Ministry of Education of the Czech Republic under grants 1M0567 and MSM7088352101.
Find Full text

Files in this item

Show simple item record