Publikace UTB
Repozitář publikační činnosti UTB

Machine learning approach for photocatalysis: An experimentally validated case study of photocatalytic dye degradation

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Machine learning approach for photocatalysis: An experimentally validated case study of photocatalytic dye degradation en
dc.contributor.author Ali, Hassan
dc.contributor.author Yasir, Muhammad
dc.contributor.author Ul Haq, Hamza
dc.contributor.author Guler, Ali Can
dc.contributor.author Masař, Milan
dc.contributor.author Khan, Muhammad Nouman Aslam
dc.contributor.author Machovský, Michal
dc.contributor.author Sedlařík, Vladimír
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof Journal of Environmental Management
dc.identifier.issn 0301-4797 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 386
dc.type article
dc.language.iso en
dc.publisher Academic Press
dc.identifier.doi 10.1016/j.jenvman.2025.125683
dc.relation.uri https://linkinghub.elsevier.com/retrieve/pii/S0301479725016597
dc.subject machine learning en
dc.subject photocatalytic degradation en
dc.subject wastewater treatment en
dc.subject cationic dyes en
dc.subject optimization removal en
dc.description.abstract In this study, machine learning (ML) models coupled with genetic algorithm (GA) and particle swarm optimization (PSO) were applied to predict the relative influence of experimental parameters of photocatalytic dye removal. Specifically, the impact of bandgap, dye concentration, photocatalyst dosage, solution volume, specific surface area, and time duration on photocatalytic degradation rate constant of cationic dyes was discerned using selected ML models, i.e., ensembled learning tree (ELT), gaussian process regression (GPR), support vector machine (SVM), and decision tree (DT). Thus, the data points were sourced from literature studies recently published in 2024 and 2023 on materials related to working on fundamental principles of photocatalysis. The ELT-PSO hybrid model outperformed all models with R2 = 0.992 and RMSE = 2.6408e−04, followed by DT, GPR, and SVM. The partial dependence plots and Shapley's analysis demonstrate that the type of dye, bandgap, dye initial concentration, and time duration are essential parameters for photocatalytic degradation, while sensitivity analysis further displayed solution volume and time duration to be the most influential parameters for rate constant determination. The optimized ML model's prediction was also experimentally validated using as-synthesized different compositions of Cu2O/WO3 heterostructures and ZnO nanoparticles. The results suggest that an ML-optimized study can be used in designing photocatalysts with optimum properties desired for the removal of cationic dyes at high rates from wastewater, thus saving energy and cost for a sustainable environment. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012460
utb.identifier.scopus 2-s2.0-105004874138
utb.identifier.wok 001493189500001
utb.identifier.pubmed 40373446
utb.identifier.coden JEVMA
utb.source j-scopus
dc.date.accessioned 2025-06-20T12:27:02Z
dc.date.available 2025-06-20T12:27:02Z
dc.description.sponsorship European Just Transition Fund; Intelligence & Talent for the Zlin Region; Coimbatore Institute of Technology, CIT; SVM; Ministerstvo Školství, Mládeže a Tělovýchovy, MSMT; DKRVO, (RP/CPS/2024-28/007, RP/CPS/2024-28/002); Ministerstvo Životního Prostředí, MZP, (CZ.02.01.01/00/23_021/0009004, CZ.10.03.01/00/22_003/0000045); Ministerstvo Životního Prostředí, MZP
dc.description.sponsorship European Just Transition Fund of the Ministry of the Environment of the Czech Republic [CZ.02.01.01/00/23_021/0009004]; Ministry of Education, Youth, and Sports of the Czech Republic-DKRVO [RP/CPS/2024-28/002, RP/CPS/2024-28/007]; The "Creativity, Intelligence & Talent for the Zlin Region" (CIT-ZK) program; [CZ.10.03.01/00/22_003/0000045]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Ali, Hassan
utb.contributor.internalauthor Yasir, Muhammad
utb.contributor.internalauthor Guler, Ali Can
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Machovský, Michal
utb.contributor.internalauthor Sedlařík, Vladimír
utb.contributor.internalauthor Kuřitka, Ivo
utb.wos.affiliation [Ali, Hassan; Yasir, Muhammad; Guler, Ali Can; Masar, Milan; Machovsky, Michal; Sedlarik, Vladimir; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic; [Ul Haq, Hamza; Khan, Muhammad Nouman Aslam] Natl Univ Sci & Technol, Sch Chem & Mat Engn, Lab Alternat Fuel & Sustainabil, Islamabad 44000, Pakistan
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, 76001, Czech Republic; Laboratory of Alternative Fuel and Sustainability, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam