Publikace UTB
Repozitář publikační činnosti UTB

Enhancing resource assignment efficiency in service industry: A predict-then-optimize approach with XGBoost

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Enhancing resource assignment efficiency in service industry: A predict-then-optimize approach with XGBoost en
dc.contributor.author Nasseri, Mehran
dc.contributor.author Falatouri, Taha
dc.contributor.author Brandtner, Patrick
dc.contributor.author Darbanian, Farzaneh
dc.contributor.author Mirshahi, Sina
dc.relation.ispartof Procedia Computer Science
dc.identifier.issn 1877-0509 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 253
dc.citation.spage 644
dc.citation.epage 653
dc.event.title 6th International Conference on Industry 4.0 and Smart Manufacturing, ISM 2024
dc.event.location Prague
utb.event.state-en Czech Republic
utb.event.state-cs Česká republika
dc.event.sdate 2024-11-19
dc.event.edate 2024-11-22
dc.type conferenceObject
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.procs.2025.01.126
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1877050925001346
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1877050925001346/pdf?md5=6c8e674917999faf5adb189642231047&pid=1-s2.0-S1877050925001346-main.pdf
dc.subject optimization en
dc.subject predict-then-optimize en
dc.subject predictive analytics en
dc.subject resource planning en
dc.subject XGBoost en
dc.description.abstract This paper addresses the critical aspect of resource planning in a service context through an integrated predictive and prescriptive approach. Utilizing real-world data from a company providing repair and maintenance services, we demonstrate the use of an XGBoost model to forecast ad-hoc service demands and subsequently optimize resource assignment using a mathematical model. Our findings show that the prediction evaluation metrics significantly improve, highlighting the superiority of complex machine learning models over baseline models such as Linear Regression. Furthermore, the integration of the prediction into the decision-making process resulted in a 26.4% lower decision error compared to the baseline model. Our research also found that the deviations in prediction and optimal objective function values are not aligned. While the average error for MAE % in prediction is 22.2%, the error for the optimal objective function is much lower, reducing to 5.3%. However, although true for our case, this might not be generalizable. Furthermore, when comparing the baseline model with these results, it is also shown that an improvement in prediction accuracy also improves decision making error. Our results indicate that a combined predict-then-optimize approach outperforms the existing methods in both predictive and prescriptive performance, demonstrating its applicability in real-world scenarios. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012411
utb.identifier.scopus 2-s2.0-105000512631
utb.source d-scopus
dc.date.accessioned 2025-05-09T08:50:18Z
dc.date.available 2025-05-09T08:50:18Z
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.ou Department of Informatics and Artificial Intelligence
utb.contributor.internalauthor Mirshahi, Sina
utb.fulltext.sponsorship This research was funded by the Christian Doppler Research Association as part of Josef Ressel Centre for Predictive Value Network Intelligence (JRC PREVAIL).
utb.scopus.affiliation University of Applied Sciences Upper Austria, Logistikum, Austria; Josef Ressel Centre for Predictive Value Network Intelligence; Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics, Tomas Bata University in Zlin, Czech Republic
utb.fulltext.projects -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NonCommercial-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NonCommercial-NoDerivatives 4.0 International