Publikace UTB
Repozitář publikační činnosti UTB

Towards anomally detection using stationary and non-stationary signal analysis

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Towards anomally detection using stationary and non-stationary signal analysis en
dc.contributor.author Jaremko, Jaroslav
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Jašek, Roman
dc.contributor.author Lukašík, Petr
dc.relation.ispartof Lecture Notes in Electrical Engineering
dc.identifier.issn 1876-1100 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-981998702-3
dc.date.issued 2024
utb.relation.volume 1081
dc.citation.spage 595
dc.citation.epage 604
dc.event.title International Conference on Advanced Engineering Theory and Applications, AETA 2022
dc.event.location Ho Chi Minh City
utb.event.state-en Vietnam
utb.event.state-cs Vietnam
dc.event.sdate 2022-12-08
dc.event.edate 2022-12-10
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-981-99-8703-0_49
dc.relation.uri https://link.springer.com/chapter/10.1007/978-981-99-8703-0_49
dc.subject anomaly detection en
dc.subject big data en
dc.subject KPSS test en
dc.subject signal analysis en
dc.subject signal processing en
dc.description.abstract This paper focuses on demonstration of an enhanced model for investigating data signals features, i.e., whether the given signal has stationary or non-stationary features. The accurate detection of the features of signals is crucial for the right directions towards methodology of further preprocessing to perform data analysis of the data signal, specifically in the tasks of finding anomalies in the given signal and big data environment. A problem often encountered is the exact determination of the occurrence of stationary or non-stationary data signal features in data processing. Within this research paper, the mathematical foundations of data signal processing are described. Based on the mathematical model of the input signal processing, an improved workflow using the enhanced statistical KPSS test and autocorrelation function (graphical) analysis is demonstrated here, to confirm the accuracy and usability of selected methodology. The alternative approach described here leads to a much lower computational effort and the achievement of accurate identification of signal features in big data environment for possible deployment of A.I. or machine learning anomaly detection pipeline. The obtained dataset and model are based on the real environment and measured signals in the production process of machine tools in company Tajmac-ZPS Zlin. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011950
utb.identifier.scopus 2-s2.0-85187789496
utb.source d-scopus
dc.date.accessioned 2024-04-17T13:13:01Z
dc.date.available 2024-04-17T13:13:01Z
utb.contributor.internalauthor Jaremko, Jaroslav
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Jašek, Roman
utb.contributor.internalauthor Lukašík, Petr
utb.fulltext.sponsorship This work was supported by the Internal Grant Agency of the Tomas Bata University in Zlin, under project number IGA/CebiaTech/2023/004, and further by the resources of A.I. Lab (ailab.fai.utb.cz), and data provided by Tajmac-ZPS company in Zlin.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic; Tajmac-ZPS, trída 3. kvetna 1180 763 02 Zlín, Malenovice, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam