Publikace UTB
Repozitář publikační činnosti UTB

Short-text semantic similarity (STSS): Techniques, challenges and future perspectives

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Short-text semantic similarity (STSS): Techniques, challenges and future perspectives en
dc.contributor.author Amur, Zaira Hassan
dc.contributor.author Hooi, Yew Kwang
dc.contributor.author Bhanbhro, Hina
dc.contributor.author Dahri, Kamran
dc.contributor.author Soomro, Gul Muhammad
dc.relation.ispartof Applied Sciences-Basel
dc.identifier.issn 2076-3417 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 13
utb.relation.issue 6
dc.type Review
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/app13063911
dc.relation.uri https://www.mdpi.com/2076-3417/13/6/3911
dc.subject short text en
dc.subject semantic similarity en
dc.subject natural language processing en
dc.subject deep learning en
dc.subject STSS en
dc.description.abstract In natural language processing, short-text semantic similarity (STSS) is a very prominent field. It has a significant impact on a broad range of applications, such as question-answering systems, information retrieval, entity recognition, text analytics, sentiment classification, and so on. Despite their widespread use, many traditional machine learning techniques are incapable of identifying the semantics of short text. Traditional methods are based on ontologies, knowledge graphs, and corpus-based methods. The performance of these methods is influenced by the manually defined rules. Applying such measures is still difficult, since it poses various semantic challenges. In the existing literature, the most recent advances in short-text semantic similarity (STSS) research are not included. This study presents the systematic literature review (SLR) with the aim to (i) explain short sentence barriers in semantic similarity, (ii) identify the most appropriate standard deep learning techniques for the semantics of a short text, (iii) classify the language models that produce high-level contextual semantic information, (iv) determine appropriate datasets that are only intended for short text, and (v) highlight research challenges and proposed future improvements. To the best of our knowledge, we have provided an in-depth, comprehensive, and systematic review of short text semantic similarity trends, which will assist the researchers to reuse and enhance the semantic information. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011488
utb.identifier.obdid 43885009
utb.identifier.scopus 2-s2.0-85152052419
utb.identifier.wok 000954097200001
utb.source J-wok
dc.date.accessioned 2023-04-18T13:35:28Z
dc.date.available 2023-04-18T13:35:28Z
dc.description.sponsorship Yayasan UTP Pre-commercialization grant (YUTP-PRG) [015PBC-005]; Computer and Information Science Department of Universiti Teknologi PETRONAS
dc.description.sponsorship Yayasan UTP, YUTP: 015PBC-005
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Department of Artificial Intelligence
utb.contributor.internalauthor Soomro, Gul Muhammad
utb.fulltext.sponsorship Funding: Yayasan UTP Pre-commercialization grant (YUTP-PRG) 015PBC-005.
utb.fulltext.sponsorship Acknowledgments: Appreciation goes to the Yayasan UTP Pre-commercialization grant (YUTPPRG) 015PBC-005 and the Computer and Information Science Department of Universiti Teknologi PETRONAS for supporting this work.
utb.wos.affiliation [Amur, Zaira Hassan; Hooi, Yew Kwang; Bhanbhro, Hina] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar 32160, Malaysia; [Dahri, Kamran] Univ Sindh, Dept Informat Technol, Jamshoro 71000, Pakistan; [Soomro, Gul Muhammad] Tomas Bata Univ, Dept Artificial Intelligence, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar32160, Malaysia; Department of Information Technology, University of Sindh, Jamshoro, 71000, Pakistan; Department of Artificial Intelligence, Tomas Bata University, Zlín, 760 01, Czech Republic
utb.fulltext.projects YUTP-PRG 015PBC-005
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International