Publikace UTB
Repozitář publikační činnosti UTB

Multifunctional bandgap-reduced ZnO nanocrystals for photocatalysis, self-cleaning, and antibacterial glass surfaces

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Multifunctional bandgap-reduced ZnO nanocrystals for photocatalysis, self-cleaning, and antibacterial glass surfaces en
dc.contributor.author Masař, Milan
dc.contributor.author Ali, Hassan
dc.contributor.author Güler, Ali Can
dc.contributor.author Urbánek, Michal
dc.contributor.author Urbánek, Pavel
dc.contributor.author Hanulíková, Barbora
dc.contributor.author Pištěková, Hana
dc.contributor.author Annušová, Adriana
dc.contributor.author Machovský, Michal
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof Colloids and Surfaces A: Physicochemical and Engineering Aspects
dc.identifier.issn 0927-7757 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1873-4359 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 656
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.colsurfa.2022.130447
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0927775722022026
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0927775722022026/pdfft?isDTMRedir=true&download=true
dc.subject ZnO en
dc.subject oxygen vacancy en
dc.subject photocatalysis en
dc.subject antibacterial en
dc.subject self-cleaning en
dc.subject glass en
dc.description.abstract A set of ZnO nanocrystals assembly with tuneable reduced bandgaps was prepared via thermal decomposition of ZnO2 precursor. A detailed Raman and EPR analysis revealed ZnO rich in oxygen vacancies with concentration varying upon annealing temperature. The structural defect features corroborated with the bandgap variations indicate photocatalytic response in the visible-light, which was evaluated by using monochromatic LEDs (377, 401, and 429 nm wavelengths) for a correct assessment of the photocatalytic activities of samples in the close vicinities of their bandgaps. It was revealed, that bandgap reduced ZnO exhibits only little yet negligible pho-tocatalytic activity towards Methylene Blue discoloration under 429 nm diode. The Photocatalytic experiments using scavengers support the model that oxygen vacancies easily trap photo-excited electrons (whether VO+ and VO++ state) and, if the energy level of this donor state is close enough, the trapped electron could easily thermalize to the conduction band as well as recombine with photo-excited holes. Furthermore, oxygen vacancies rich ZnO nanocrystals treated glasses were prepared and their photocatalytic-induced self-cleaning property, wettability, and antibacterial activities were evaluated under both UV and visible-light. Besides excellent antibacterial activities against both S. aureus and E. coli, which was achieved even in dark, both photocatalytically-induced self-cleaning ability and wettability provided yet another indirect evidence of the inability of bandgap-reduced ZnO to become activated under visible-light irradiation. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011260
utb.identifier.obdid 43884639
utb.identifier.scopus 2-s2.0-85141255812
utb.identifier.wok 000890081700002
utb.identifier.coden CPEAE
utb.source j-scopus
dc.date.accessioned 2023-01-06T08:03:59Z
dc.date.available 2023-01-06T08:03:59Z
dc.description.sponsorship RP/CPS/2022/002, RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic - DKRVO [RP/CPS/2022/007, RP/CPS/2022/002]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Masař, Milan
utb.contributor.internalauthor Ali, Hassan
utb.contributor.internalauthor Güler, Ali Can
utb.contributor.internalauthor Urbánek, Michal
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Hanulíková, Barbora
utb.contributor.internalauthor Pištěková, Hana
utb.contributor.internalauthor Machovský, Michal
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.affiliation Milan Masar a, Hassan Ali a, Ali Can Guler a, Michal Urbanek a, Pavel Urbanek a, Barbora Hanulikova a, Hana Pistekova a, Adriana Annusova b,c, Michal Machovsky a,*, Ivo Kuritka a a Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic b Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia c Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia * Corresponding author. E-mail address: machovsky@utb.cz (M. Machovsky).
utb.fulltext.dates Received 22 August 2022 Received in revised form 17 October 2022 Accepted 25 October 2022 Available online 28 October 2022
utb.fulltext.references [1] K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 44 (2005) 8269–8285, https://doi.org/10.1143/JJAP.44.8269. [2] D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibanez, I. Di Somma, Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal. B Environ. 170 (2015) 90–123, https://doi.org/10.1016/j.apcatb.2014.12.050. [3] L. Yao, J. He, Recent progress in antireflection and self-cleaning technology - from surface engineering to functional surfaces, Prog. Mater. Sci. 61 (2014) 94–143, https://doi.org/10.1016/j.pmatsci.2013.12.003. [4] ASTM G173-03 (Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37◦ Tilted Surface), 2012. [5] S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560–569, https://doi.org/10.1016/j.jhazmat.2009.05.064. [6] A.B. Djurisic, Y. He, A.M.C. Ng, Visible-light photocatalysts: prospects and challenges, Apl. Mater. 8 (2020), 030903, https://doi.org/10.1063/1.5140497. [7] G. Reginato, L. Zani, M. Calamante, A. Mordini, A. Dessi, Dye-sensitized heterogeneous photocatalysts for green redox reactions, Eur. J. Inorg. Chem. 2020 (2020) 899–917, https://doi.org/10.1002/ejic.201901174. [8] J. Ge, Y. Zhang, S. Park, Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: a mini review, Materials 12 (2019) 1916, https://doi.org/10.3390/ma12121916. [9] Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: Principles, synthesis, and applications, Mater. Today 21 (2018) 1042–1063, https://doi.org/10.1016/j.mattod.2018.04.008. [10] X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metalmetal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation, Energy Environ. Sci. 10 (2017) 402–434, https://doi.org/10.1039/c6ee02265k. [11] R. Marschall, L. Wang, Non-metal doping of transition metal oxides for visible-light photocatalysis, Catal. Today 225 (2014) 111–135, https://doi.org/10.1016/j.cattod.2013.10.088. [12] V. Kurnaravel, S. Mathew, J. Bartlett, S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances, Appl. Catal. B Environ. 244 (2019) 1021–1064, https://doi.org/10.1016/j.apcatb.2018.11.080. [13] J. Zhang, K. Tse, M. Wong, Y. Zhang, J. Zhu, A brief review of co-doping, Front. Phys. 11 (2016), 117405, https://doi.org/10.1007/s11467-016-0577-2. [14] T. Sano, N. Mera, Y. Kanai, C. Nishimoto, S. Tsutsui, T. Hirakawa, N. Negishi, Origin of visible-light activity of N-doped TiO2 photocatalyst: behaviors of N and S atoms in a wet N-doping process, Appl. Catal. B Environ. 128 (2012) 77–83, https://doi.org/10.1016/j.apcatb.2012.06.034. [15] J.Z. Bloh, R. Dillert, D.W. Bahnemann, Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size, J. Phys. Chem. C 116 (2012) 25558–25562, https://doi.org/10.1021/jp307313z. [16] Z. Pei, L. Ding, J. Hu, S. Weng, Z. Zheng, M. Huang, P. Liu, Defect and its dominance in ZnO films: a new insight into the role of defect over photocatalytic activity, Appl. Catal. B Environ. 142 (2013) 736–743, https://doi.org/10.1016/j.apcatb.2013.05.055. [17] Z. Xiu, M. Guo, T. Zhao, K. Pan, Z. Xing, Z. Li, W. Zhou, Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications, Chem. Eng. J. 382 (2020), 123011, https://doi.org/10.1016/j.cej.2019.123011. [18] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys. 72 (2009), 126501, https://doi.org/10.1088/0034-4885/72/12/126501. [19] K. Tang, S. Gu, J. Ye, S. Zhu, R. Zhang, Y. Zheng, Recent progress of the native defects and p-type doping of zinc oxide, Chin. Phys. B 26 (2017), 047702, https://doi.org/10.1088/1674-1056/26/4/047702. [20] B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Chevire, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarstrom, F. Odobel, S. Jobic, P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions, J. Am. Chem. Soc. 134 (2012) 464–470, https://doi.org/10.1021/ja208044k. [21] J.E. Eixenberger, C.B. Anders, K. Wada, K.M. Reddy, R.J. Brown, J. Moreno-Ramirez, A.E. Weltner, C. Karthik, D.A. Tenne, D. Fologea, D.G. Wingett, Defect engineering of ZnO nanoparticles for bioimaging applications, ACS Appl. Mater. Interfaces 11 (2019) 24933–24944, https://doi.org/10.1021/acsami.9b01582. [22] V.L. Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark, Langmuir 31 (2015) 9155–9162, https://doi.org/10.1021/acs.langmuir.5b02266. [23] J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review, Ceram. Int. 44 (2018) 7357–7377, https://doi.org/10.1016/j.ceramint.2018.02.013. [24] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interfaces 4 (2012) 4024–4030, https://doi.org/10.1021/am300835p. [25] Y. Tang, H. Zhou, K. Zhang, J. Ding, T. Fan, D. Zhang, Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation, Chem. Eng. J. 262 (2015) 260–267, https://doi.org/10.1016/j.cej.2014.09.095. [26] S.Y. Gao, F. Yang, C.J. Song, Q. Cai, R.Y. Wang, S.J. Zhou, Y. Kong, Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets, Appl. Surf. Sci. 505 (2020), https://doi.org/10.1016/j.apsusc.2019.144580. [27] Y.C. Xu, H.Z. Li, B.J. Sun, P.Z. Qiao, L.P. Ren, G.H. Tian, B.J. Jiang, K. Pan, W. Zhou, Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance, Chem. Eng. J. 379 (2020), https://doi.org/10.1016/j.cej.2019.122295. [28] Y. Lv, W. Yao, X. Ma, C. Pan, R. Zong, Y. Zhu, The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1-x photocatalyst, Catal. Sci. Technol. 3 (2013) 3136–3146, https://doi.org/10.1039/c3cy00369h. [29] Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai, Y. Zhu, Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation, Appl. Catal. B Environ. 138 (2013) 26–32, https://doi.org/10.1016/j.apcatb.2013.02.011. [30] Y. Peng, Y. Wang, Q. Chen, Q. Zhub, A.W. Xu, Stable yellow ZnO mesocrystals with efficient visible-light photocatalytic activity, CrystEngComm 16 (2014) 7906–7913, https://doi.org/10.1039/c4ce00695j. [31] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO, J. Phys. Chem. C 118 (2014) 15300–15307, https://doi.org/10.1021/jp5033349. [32] M. Lau, S. Reichenberger, I. Haxhiaj, S. Barcikowski, A.M. Muller, Mechanism of laser-induced bulk and surface defect generation in ZnO and TiO2 nanoparticles: effect on photoelectrochemical performance, ACS Appl. Energy Mater. 1 (2018) 5366–5385, https://doi.org/10.1021/acsaem.8b00977. [33] Z.S. Li, X.H. Liu, M. Zhou, S.L. Zhang, S.Z. Cao, G.L. Lei, C.M. Lou, J. Zhang, Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine, J. Hazard. Mater. 415 (2021), https://doi.org/10.1016/j.jhazmat.2021.125757. [34] J. Sedlak, I. Kuritka, M. Masar, M. Machovsky, P. Urbanek, P. Bazant, P. Janota, M. Dvorackova, Contributions of morphological and structural parameters at different hierarchical morphology levels to photocatalytic activity of mesoporous nanostructured ZnO, Appl. Surf. Sci. 513 (2020), 145773, https://doi.org/10.1016/j.apsusc.2020.145773. [35] H. Ali, A.C. Guler, M. Masar, P. Urbanek, M. Urbanek, D. Skoda, P. Suly, M. Machovsky, D. Galusek, I. Kuritka, Solid-state synthesis of direct Z-scheme Cu2O/WO3 nanocomposites with enhanced visible-light photocatalytic performance, Catalysts 11 (2021), https://doi.org/10.3390/catal11020293. [36] ISO 21066:2018 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) — Qualitative and Semiquantitative Assessment of the Photocatalytic Activities of Surfaces by the Reduction of Resazurin in A Deposited Ink Film. [37] ISO 22196:2011 Measurement of Antibacterial Activity on Plastics and Other Non-porous Surfaces. [38] T. Daley, K.B. Opuni, E. Raj, A.J. Dent, G. Cibin, T. Hyde, I.G. Sankar, Monitoring the process of formation of ZnO from ZnO2 using in situ combined XRD/XAS technique, J. Phys. Condens. Matter 33 (2021), 264002, https://doi.org/10.1088/1361-648X/abfb91. [39] A. Escobedo-Morales, D. Tellez-Flores, M.d.L. Ruiz Peralta, J. Garcia-Serrano, A.M. Herrera-Gonzalez, E. Rubio-Rosas, E. Sanchez-Mora, O. Olivares Xometl, Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution, Mater. Chem. Phys., 151, 2015, pp. 282–287. (DOI: 10.1016/j.matchemphys.2014.11.067). [40] M. Sun, W. Hao, C. Wang, T. Wang, A simple and green approach for preparation of ZnO2 and ZnO under sunlight irradiation, Chem. Phys. Lett. 443 (2007) 342–346, https://doi.org/10.1016/j.cplett.2007.06.098. [41] H. EYSEL, S. THYM, Raman-spectra of peroxides, Z. Anorg. Allg. Chem. 411 (1975) 97–102, https://doi.org/10.1002/zaac.19754110202. [42] V. Vacque, B. Sombret, J. Huvenne, P. Legrand, S. Suc, Characterisation of the O-O peroxide bond by vibrational spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53 (1997) 55–66, https://doi.org/10.1016/S0584-8539(96)01777-1. [43] H. Fukushima, T. Kozu, H. Shima, H. Funakubo, H. Uchida, T. Katoda, K. Nishida, Evaluation of oxygen vacancy in ZnO using Raman spectroscopy, in: Proceedings of the 2015 Joint Ieee International Symposium on the Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop (Isaf/isif/pfm), 2015, pp. 28–31. [44] Y. Song, S.X. Zhang, C.H. Zhang, Y.T. Yang, K.Y. Lv, Raman spectra and microstructure of zinc oxide irradiated with swift heavy ion, Crystals 9 (2019), https://doi.org/10.3390/cryst9080395. [45] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida, Evaluation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy, J. Ceram. Soc. Jpn. 125 (2017) 445–448, https://doi.org/10.2109/jcersj2.16262. [46] E.H. Hasdeo, A. Nugraha, M.S. Dresselhaus, R. Saito, Breit-Wigner-Fano line shapes in Raman spectra of graphene, Phys. Rev. B 90 (2014), https://doi.org/10.1103/PhysRevB.90.245140. [47] Y.K. Kim, H.M. Jang, Raman line-shape analysis of nano-structural evolution in cation-ordered ZrTiO4-based dielectrics, Solid State Commun. 127 (2003) 433–437, https://doi.org/10.1016/S0038-1098(03)00463-0. [48] J.B. Wang, H.M. Zhong, Z.F. Li, W. Lu, Raman study for E-2 phonon of ZnO in Zn1-xMnxO nanoparticles, J. Appl. Phys. 97 (2005), https://doi.org/10.1063/1.1865340. [49] I. Kosacki, T. Suzuki, H.U. Anderson, P. Colomban, Raman scattering and lattice defects in nanocrystalline CeO2 thin films, Solid State Ion. 149 (2002) 99–105, https://doi.org/10.1016/S0167-2738(02)00104-2. [50] G.S. Dev, V. Sharma, A. Singh, V.S. Baghel, M. Yanagida, A. Nagataki, N. Tripathi, Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model, RSC Adv. 9 (2019) 26956–26960, https://doi.org/10.1039/ c9ra04555d. [51] P.H. Shih, S.Y. Wu, The influence of short-range correlation on the phonon confinement of a single ZnO nanowire, Nanoscale Res. Lett. 12 (2017), https://doi.org/10.1186/s11671-017-2013-0. [52] N. Tripathi, K. Vijayarangamuthu, S. Rath, A Raman spectroscopic study of structural evolution of electrochemically deposited ZnO films with deposition time, Mater. Chem. Phys. 126 (2011) 568–572, https://doi.org/10.1016/j.matchemphys.2011.01.026. [53] J.B. Wang, H.M. Zhong, Z.F. Li, W. Lu, Raman study for E-2 phonon of ZnO in Zn1-xMnxO nanoparticles, J. Appl. Phys. 97 (2005), https://doi.org/10.1063/1.1865340. [54] R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Temperature dependence of raman scattering in ZnO, Phys. Rev. B 75 (2007), 165202, https://doi.org/10.1103/PhysRevB.75.165202. [55] A. Souissi, C. Sartel, G. Amiri, A. Meftah, A. Lusson, P. Galtier, V. Sallet, M. Oueslati, Raman study of activated quasi-modes due to misorientation of ZnO nanowires, Solid State Commun. 152 (2012) 1729–1733, https://doi.org/10.1016/j.ssc.2012.06.004. [56] A. Janotti, C.G. Van de Walle, Native point defects in ZnO, Phys. Rev. B 76 (2007), 165202, https://doi.org/10.1103/PhysRevB.76.165202. [57] K. Tang, S. Gu, J. Ye, S. Zhu, R. Zhang, Y. Zheng, Recent progress of the native defects and p-type doping of zinc oxide, Chin. Phys. B 26 (2017), 047702, https://doi.org/10.1088/1674-1056/26/4/047702. [58] M.D. McCluskey, S.J. Jokela, Defects in ZnO, J. Appl. Phys. 106 (2009), 071101, https://doi.org/10.1063/1.3216464. [59] A. Janotti, C. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett. 87 (2005), 122102, https://doi.org/10.1063/1.2053360. [60] L. Vlasenko, G. Watkins, Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K, Phys. Rev. B 72 (2005), 035203, https://doi.org/10.1103/PhysRevB.72.035203. [61] V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Zinc oxide nanoparticles with defects, Adv. Funct. Mater. 15 (2005) 1945–1954, https://doi.org/10.1002/adfm.200500087. [62] G. Neumann, On the defect structure of zinc-doped zinc-oxide, Phys. Status Solidi B Basic Res. 105 (1981) 605–612, https://doi.org/10.1002/pssb.2221050220. [63] L.E. Halliburton, N.C. Giles, N.Y. Garces, M. Luo, C.C. Xu, L.H. Bai, L.A. Boatner, Production of native donors in ZnO by annealing at high temperature in Zn vapor, Appl. Phys. Lett. 87 (2005), 172108, https://doi.org/10.1063/1.2117630. [64] A. Poppl, G. Volkel, Esr investigation of the oxygen vacancy in pure and Bi2o3-doped Zno ceramics, Phys. Status Solidi A Appl. Res. 115 (1989) 247–255, https://doi.org/10.1002/pssa.2211150127. [65] L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q. Xue, X. Du, Oxygen vacancies: the origin of n-type conductivity in ZnO, Phys. Rev. B 93 (2016), 235305, https://doi.org/10.1103/PhysRevB.93.235305. [66] S. Polarz, J. Strunk, V. Ischenko, M.W.E. van den Berg, O. Hinrichsen, M. Muhler, M. Driess, On the role of oxygen defects in the catalytic performance of zinc oxide, Angew. Chem. Int. Ed. 45 (2006) 2965–2969, https://doi.org/10.1002/anie.200503068. [67] K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, B. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79 (1996) 7983–7990, https://doi.org/10.1063/1.362349. [68] R. Iyengar, V. Rao, Electron spin resonance studies on zinc peroxide and on zinc oxide obtained from a decomposition of zinc peroxide, J. Phys. Chem., 75, 1971, pp. 3089-&. (DOI: 10.1021/j100689a009). [69] K. Vanheusden, C. Seager, W. Warren, D. Tallant, J. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett. 68 (1996) 403–405, https://doi.org/10.1063/1.116699. [70] V. Srikant, D. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys. 83 (1998) 5447–5451, https://doi.org/10.1063/1.367375. [71] P.A. Rodnyi, I.V. Khodyuk, Optical and luminescence properties of zinc oxide (review), Opt. Spectrosc. 111 (2011) 776–785, https://doi.org/10.1134/S0030400X11120216. [72] J. Lv, C. Li, Evidences of V-O, V-Zn, and O-i defects as the green luminescence origins in ZnO, Appl. Phys. Lett. 103 (2013), 232114, https://doi.org/10.1063/1.4844735. [73] W. Li, G. Wang, C. Chen, J. Liao, Z. Li, Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions, Nanomaterials 7 (2017), https://doi.org/10.3390/nano7010020. [74] Y. Ma, T. Choi, S.H. Cheung, Y. Cheng, X. Xu, Y. Xie, H. Li, M. Li, H. Luo, W. Zhang, S.K. So, S. Chen, S. Tsang, Charge transfer-induced photoluminescence in ZnO nanoparticles, Nanoscale 11 (2019) 8736–8743, https://doi.org/10.1039/c9nr02020a. [75] A. Djurisic, W. Choy, V. Roy, Y. Leung, C. Kwong, K. Cheah, T. Rao, W. Chan, H. Lui, C. Surya, Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure, Adv. Funct. Mater. 14 (2004) 856–864, https://doi.org/10.1002/adfm.200305082. [76] L.Q. Jing, Y.C. Qu, B.Q. Wang, S.D. Li, B.J. Jiang, L.B. Yang, W. Fu, H.G. Fu, J. Z. Sun, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells 90 (2006) 1773–1787, https://doi.org/10.1016/j.solmat.2005.11.007. [77] N. Uekawa, N. Mochizuki, J. Kajiwara, F. Mori, Y.J. Wu, K. Kakegawa, Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide, Phys. Chem. Chem. Phys. 5 (2003) 929–934, https://doi.org/10.1039/b210990e. [78] H. Ali, A.C. Guler, M. Masar, P. Urbanek, M. Urbanek, D. Skoda, P. Suly, M. Machovsky, D. Galusek, I. Kuritka, Solid-State Synthesis of Direct Z-Scheme Cu2O/ WO3 Nanocomposites with Enhanced Visible-Light Photocatalytic Performance, 11, 2021. [79] S. Morrison, T. Freund, Chemical role of holes and electrons in Zno photocatalysis, J. Chem. Phys. 47 (1967) 1543. &. doi:10.1063/1.1712115. [80] A. Mills, D. Yusufu, N. Wells, C. O’Rourke, Assessment of activity of ’transparent and clear’ and ’opaque and highly coloured’ photocatalytic samples using a fluorescent photocatalytic activity indicator ink, FPaii, J. Photochem. Photobiol. A Chem. 330 (2016) 90–94, https://doi.org/10.1016/j.jphotochem.2016.07.019. [81] A. Mills, J. Wang, S. Lee, M. Simonsen, An intelligence ink for photocatalytic films, Chem. Commun. (2005) 2721–2723, https://doi.org/10.1039/b501131k. [82] A. Mills, N. Wells, Reductive photocatalysis and smart inks, Chem. Soc. Rev. 44 (2015) 2849–2864, https://doi.org/10.1039/c4cs00279b. [83] N. Barbero, D. Vione, Why dyes should not be used to test the photocatalytic activity of semiconductor oxides, Environ. Sci. Technol. 50 (2016) 2130–2131, https://doi.org/10.1021/acs.est.6b00213. [84] M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review, Molecules 20 (2015) 88–110, https://doi.org/10.3390/molecules20010088. [85] A. Mills, N. Wells, C. O’Rourke, Probing the activities of UV and visible-light absorbing photocatalyst powders using a resazurin-based photocatalyst activity indicator ink (Rz Paii), J. Photochem. Photobiol. A Chem. 338 (2017) 123–133, https://doi.org/10.1016/j.jphotochem.2017.01.030. [86] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature 388 (1997) 431–432, https://doi.org/10.1038/41233. [87] M.G. Krishna, M. Vinjanampati, D.D. Purkayastha, Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects, Eur. Phys. J. Appl. Phys. 62 (2013) 30001, https://doi.org/10.1051/epjap/2013130048. [88] Y. Wolanov, P.V. Prikhodchenko, A.G. Medvedev, R. Pedahzur, O. Lev, Zinc dioxide nanoparticulates: a hydrogen peroxide source at moderate pH, Environ. Sci. Technol. 47 (2013) 8769–8774, https://doi.org/10.1021/es4020629. [89] C. Bergs, L. Brueck, R.R. Rosencrantz, G. Conrads, L. Elling, A. Pich, Biofunctionalized zinc peroxide (ZnO2) nanoparticles as active oxygen sources and antibacterial agents, RSC Adv. 7 (2017) 38998–39010, https://doi.org/10.1039/c7ra06332f.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – DKRVO (RP/CPS/2022/007) and (RP/CPS/2022/002). We also appreciate support of the Yasar, Oezlen-Ferruh from Bruker BioSpin GmbH and application scientists involved in ESR measurements; Sylwia Kacprzak, Patrick Carl, and Thilo Hetzke (Bruker BioSpin GmbH, Rheinstetten, Germany).
utb.wos.affiliation [Masar, Milan; Ali, Hassan; Guler, Ali Can; Urbanek, Michal; Urbanek, Pavel; Hanulikova, Barbora; Pistekova, Hana; Machovsky, Michal; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic; [Annusova, Adriana] Slovak Acad Sci, Inst Phys, Dept Multilayers & Nanostruct, Dubravsk cesta 9, Bratislava 84511, Slovakia; [Annusova, Adriana] Slovak Acad Sci, Ctr Adv Mat Applicat, Dubravska cesta 9, Bratislava 84511, Slovakia
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, Zlin, 760 01, Czech Republic; Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 11, Slovakia; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 11, Slovakia
utb.fulltext.projects RP/CPS/2022/007
utb.fulltext.projects RP/CPS/2022/002
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam