Publikace UTB
Repozitář publikační činnosti UTB

Evolutionary algorithms as a tool for shielding design

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evolutionary algorithms as a tool for shielding design en
dc.contributor.author Kovář, Stanislav
dc.contributor.author Kavánková, Iva
dc.contributor.author Renzler, Michael
dc.contributor.author Valouch, Jan
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Mair, Dominik
dc.relation.ispartof 2022 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2022
dc.identifier.issn 2158-110X Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-1-6654-0929-2
dc.date.issued 2022
dc.citation.spage 575
dc.citation.epage 579
dc.event.title 2022 IEEE International Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMCSI 2022
dc.event.location Spokane, WA
utb.event.state-en United States
utb.event.state-cs Spojené státy americké
dc.event.sdate 2022-08-01
dc.event.edate 2022-08-05
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/EMCSI39492.2022.9889487
dc.relation.uri https://ieeexplore.ieee.org/document/9889487
dc.relation.uri https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9889487
dc.subject shielding effectiveness en
dc.subject planar transparent material en
dc.subject voxels en
dc.subject evolutionary algorithms en
dc.description.abstract The paper deals with the shielding enclosure design using evolutionary algorithms without predetermined conditions. The designed shield consists of an array of elements that represent conductive or non-conductive parts. The expected output is to design a shield with sufficient balance between shielding effectiveness and transparency in systems that need an optical line of sight. The wide frequency transparent shielding design is a complex task that researchers so far mostly solved by composite polymers. The authors use a different approach using traditional conductive material and element folding technology. Element assembly is performed by an evolutionary algorithm that decides the properties of the material used and creates the optimal structure to achieve the desired results. The paper describes the design concept for planar shielding with metaheuristics and the preliminary results. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1011199
utb.identifier.obdid 43883691
utb.identifier.scopus 2-s2.0-85140832238
utb.identifier.wok 000975927600120
utb.source d-scopus
dc.date.accessioned 2022-11-29T07:49:18Z
dc.date.available 2022-11-29T07:49:18Z
dc.description.sponsorship CZ.02.2.69/0.0/0.0/16028/0006243; Univerzita Tomáše Bati ve Zlíně: IGA/CebiaTech/2022/004, IGA/FAI/2022/001
dc.description.sponsorship Internal Grant Agency of Tomas Bata University [IGA/FAI/2022/001, IGA/CebiaTech/2022/004]; TBU Research and Development Capacity Development project in Zlin [CZ.02.2.69/0.0/0.0/16028/0006243]
utb.contributor.internalauthor Kovář, Stanislav
utb.contributor.internalauthor Kavánková, Iva
utb.contributor.internalauthor Valouch, Jan
utb.contributor.internalauthor Kadavý, Tomáš
utb.fulltext.affiliation Stanislav Kovar Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic skovar@utb.cz Jan Valouch Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic valouch@utb.cz Iva Kavankova Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic kavankova@utb.cz Tomas Kadavy Faculty of Applied Informatics Tomas Bata University in Zlín Zlín, Czech Republic kadavy@utb.cz Michael Renzler Department of Mechatronics University of Innsbruck Innsbruck, Austria michael.renzler@uibk.ac.at Dominik Mair Department of Mechatronics University of Innsbruck Innsbruck, Austria dominik.mair@uibk.ac.at
utb.fulltext.dates Date Added to IEEE Xplore: 26 September 2022
utb.fulltext.references [1] M. Gonzalez, J. Pozuelo, and J. Baselga, “Electromagnetic shielding ´materials in ghz range,” The Chemical Record, vol. 18, no. 7-8, pp. 1000–1009, 2018. [2] D. D. Chung, “Materials for electromagnetic interference shielding,” Materials Chemistry and Physics, p. 123587, 2020. [3] A. Iqbal, P. Sambyal, and C. M. Koo, “2d mxenes for electromagnetic shielding: a review,” Advanced Functional Materials, vol. 30, no. 47, p. 2000883, 2020. [4] V. Shukla, “Review of electromagnetic interference shielding materials fabricated by iron ingredients,” Nanoscale Advances, vol. 1, no. 5, pp. 1640–1671, 2019. [5] “Ieee standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m,” IEEE Std 299.1-2013, pp. 1–96, 2014. [6] T. Kadavy, S. Kovar, M. Pluhacek, A. Viktorin, and R. Senkerik, “Evolutionary algorithms applied to a shielding enclosure design,” in Artificial Intelligence and Soft Computing, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, Eds. Cham: Springer International Publishing, 2019, pp. 445–455. [7] T. Kadavy, S. Kovar, R. Senkerik, and M. Pluhacek, “On the design of a front-face grid for shielding enclosure using evolutionary computations,” in 2019 Photonics Electromagnetics Research Symposium - Fall (PIERS - Fall), 2019, pp. 443–450. [8] S. Kovář, J. Valouch, T. Kadavy, M. Pospíšílík, and M. Adámek, “Enclosure shielding effectiveness calculation using shade algorithm,” in 2018 19th International Scientific Conference on Electric Power Engineering (EPE), 2018, pp. 1–4. [9] D. Mair, M. Renzler, A. Pfeifhofer, and T. Ußmüller, “Evolutionary optimization of asymmetrical pixelated antennas employing shifted cross shaped elements for uhf rfid,” Electronics, vol. 9, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/11/1856 [10] Z. Liang, Z. Zhao, M. Pu, J. Luo, X. Xie, Y. Wang, Y. Guo, X. Ma, and X. Luo, “Metallic nanomesh for high-performance transparent electromagnetic shielding,” Optical Materials Express, vol. 10, no. 3, pp. 796–806, 2020. [11] X. Zhang, Y. Zhong, and Y. Yan, “Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films,” physica status solidi (a), vol. 215, no. 14, p. 1800014, 2018. [12] J. Gu, S. Hu, H. Ji, H. Feng, W. Zhao, J. Wei, and M. Li, “Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding,” Nanotechnology, vol. 31, no. 18, p. 185303, 2020. [13] A. Voronin, Y. Fadeev, I. Govorun, I. Podshivalov, M. Simunin, I. Tambasov, D. Karpova, T. Smolyarova, A. Lukyanenko, A. Karacharov et al., “Cu–ag and ni–ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance,” Journal of Materials Science, pp. 1–22, 2021. [14] Y. Xia, J. Fang, P. Li, B. Zhang, H. Yao, J. Chen, J. Ding, and J. Ouyang, “Solution-processed highly superparamagnetic and conductive pedot: Pss/fe3o4 nanocomposite films with high transparency and high mechanical flexibility,” ACS applied materials & interfaces, vol. 9, no. 22, pp. 19 001–19 010, 2017. [15] D.-H. Kim, Y. Kim, and J.-W. Kim, “Transparent and flexible film for shielding electromagnetic interference,” Materials & Design, vol. 89, pp. 703–707, 2016. [16] S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, Y. Lee et al., “Electromagnetic interference (emi) transparent shielding of reduced graphene oxide (rgo) interleaved structure fabricated by electrophoretic deposition,” ACS applied materials & interfaces, vol. 6, no. 20, pp. 17 647–17 653, 2014. [17] L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu, and Z.-M. Li, “Highly efficient and reliable transparent electromagnetic interference shielding film,” ACS applied materials & interfaces, vol. 10, no. 14, pp. 11 941–11 949, 2018. [18] L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, “Transparent conducting graphene hybrid films to improve electromagnetic interference (emi) shielding performance of graphene,” ACS applied materials & interfaces, vol. 9, no. 39, pp. 34 221–34 229, 2017. [19] P. Mair, V. S. Goettgens, T. Rainer, N. Weinberger, I. LetofskyPapst, S. Mitsche, and G. Leichtfried, “Laser powder bed fusion of nano-cab6 decorated 2024 aluminum alloy,” Journal of Alloys and Compounds, vol. 863, p. 158714, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925838821001213 [20] P. Mair, L. Kaserer, J. Braun, N. Weinberger, I. LetofskyPapst, and G. Leichtfried, “Microstructure and mechanical properties of a tib2-modified al–cu alloy processed by laser powder-bed fusion,” Materials Science and Engineering: A, vol. 799, p. 140209, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0921509320312740
utb.fulltext.sponsorship The work was funded with the support of the Internal Grant Agency of Tomas Bata University under project No. IGA/FAI/2022/001, IGA/CebiaTech/2022/004, and the TBU Research and Development Capacity Development project in Zlín CZ.02.2.69/0.0/0.0/16028/0006243.
utb.wos.affiliation [Kovar, Stanislav; Kavankova, Iva; Valouch, Jan; Kadavy, Tomas] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic; [Renzler, Michael; Mair, Dominik] Univ Innsbruck, Dept Mechatron, Innsbruck, Austria
utb.scopus.affiliation Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, Czech Republic; University of Innsbruck, Department of Mechatronics, Innsbruck, Austria
utb.fulltext.projects IGA/FAI/2022/001
utb.fulltext.projects IGA/CebiaTech/2022/004
utb.fulltext.projects CZ.02.2.69/0.0/0.0/16028/0006243
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam