Contact Us | Language: čeština English
dc.title | Blood oxygen concentration and physiological data changes during motion while wearing face masks | en |
dc.contributor.author | Charvátová, Hana | |
dc.contributor.author | Procházka, Aleš | |
dc.contributor.author | Fričl, Matěj | |
dc.contributor.author | Vyšata, Oldřich | |
dc.relation.ispartof | IEEE Access | |
dc.identifier.issn | 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
dc.citation.spage | 91763 | |
dc.citation.epage | 91770 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.identifier.doi | 10.1109/ACCESS.2022.3202931 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9869822/ | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9869822 | |
dc.subject | blood | en |
dc.subject | motion control | en |
dc.subject | heart rate | en |
dc.subject | biomedical monitoring | en |
dc.subject | absorption | en |
dc.subject | temperature sensors | en |
dc.subject | cameras | en |
dc.subject | computational intelligence | en |
dc.subject | machine learning | en |
dc.subject | motion monitoring | en |
dc.subject | wearable sensors | en |
dc.subject | blood oxygen concentration | en |
dc.subject | breathing analysis | en |
dc.subject | computational intelligence | en |
dc.subject | machine learning | en |
dc.subject | classification | en |
dc.description.abstract | The study of physiological changes recorded by wearable devices during physical exercises belongs to very important research topics in neurology for the detection of motion disorders or monitoring of the fitness level during sports activities. This paper contributes to this area with studies of the effect of face masks and respirators on blood oxygen concentration, breathing frequency, and the heart rate changes. Experimental data sets include 296 segments of their total length of 60 hours, recorded on a home exercise bike under different motion conditions. Wearable instruments with oximetric, heart rate, accelerometric, and thermal camera sensors were used to fill the own database of signals recorded with selected sampling frequencies. The proposed methodology includes fundamental signal and image processing methods for signal analysis and machine learning tools for labeling image components and detecting facial temperature changes. Results show the minimal effect of mask wearing on blood oxygen concentration but its substantial influence on the breathing frequency and the heart rate. The use of a respirator substantially increased the respiratory rate for the given set of experiments under the load. This indicates how wearable sensors, computational intelligence, and machine learning can be used for motion monitoring and data analysis of signals recorded in different conditions. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011136 | |
utb.identifier.obdid | 43884056 | |
utb.identifier.scopus | 2-s2.0-85137583288 | |
utb.identifier.wok | 000852480700001 | |
utb.source | j-scopus | |
dc.date.accessioned | 2022-09-20T08:07:44Z | |
dc.date.available | 2022-09-20T08:07:44Z | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Computing and Control Engineering | |
utb.contributor.internalauthor | Charvátová, Hana | |
utb.fulltext.affiliation | HANA CHARVÁTOVÁ https://orcid.org/0000-0001-7363-976X 1, ALEŠ PROCHÁZKA https://orcid.org/0000-0002-0270-1738 2,3,4, (Life Senior Member, IEEE),MATĚJ FRIČL2, AND OLDŘICH VYŠATA4, (Member, IEEE) 1 Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic 2 Department of Computing and Control Engineering, University of Chemistry and Technology at Prague, 160 00 Prague, Czech Republic 3 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University of Prague, 160 00 Prague, Czech Republic 4 Department of Neurology, Faculty of Medicine, Charles University at Hradec Králové, 500 05 Hradec Králové, Czech Republic Corresponding author: Hana Charvátová (hcharvatova@email.cz) | |
utb.fulltext.dates | Received 15 August 2022 accepted 27 August 2022 date of publication 29 August 2022 date of current version 6 September 2022 | |
utb.fulltext.references | [1] C. Buckley, L. Alcock, R. McArdle, R. Rehman, S. D. Din, C. Mazzà, A. Yarnall, and L. Rochester, ‘‘The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control,’’ Brain Sci., vol. 9, no. 2, p. 34, Feb. 2019. [2] O. Geman, S. Sanei, I. Chiuchisan, A. Graur, A. Prochazka, and O. Vysata, ‘‘Towards an inclusive Parkinson’s screening system,’’ in Proc. 18th Int. Conf. Syst. Theory, Control Comput. (ICSTCC), Sinaia, Romania, Oct. 2014, pp. 475–481. [3] A. Prochazka, O. Dostal, P. Cejnar, H. I. Mohamed, Z. Pavelek, M. Valis, and O. Vysata, ‘‘Deep learning for accelerometric data assessment and ataxic gait monitoring,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 360–367, 2021. [4] H. Charvatova, A. Prochazka, O. Vysata, C. P. Suarez-Araujo, and J. H. Smith, ‘‘Evaluation of accelerometric and cycling cadence data for motion monitoring,’’ IEEE Access, vol. 9, pp. 129256–129263, 2021. [5] Z. Kalyuzhner, S. Agdarov, A. Bennett, Y. Beiderman, and Z. Zalevsky, ‘‘Remote photonic sensing of blood oxygen saturation via tracking of anomalies in micro-saccades patterns,’’ Opt. Exp., vol. 29, no. 3, p. 3393, 2021. [6] M. Nitzan, I. Nitzan, and Y. Arieli, ‘‘The various oximetric techniques used for the evaluation of blood oxygenation,’’ Sensors, vol. 20, no. 17, p. 4844, Aug. 2020. [7] A. Procházka, S. Vaseghi, M. Yadollahi, O. Ťupa, J. Mareš, and O. Vyšata, ‘‘Remote physiological and GPS data processing in evaluation of physical activities,’’ Med. Biol. Eng. Comput., vol. 52, no. 4, pp. 301–308, Apr. 2014. [8] C. Hoffmann, ‘‘Effect of a facemask on heart rate, oxygen saturation, and rate of perceived exertion [auswirkung einer mund-nasen-bedeckung auf herzfrequenz, sauerstoffsättigung und subjektives belastungsempfinden],’’ Deutsche Zeitschrift fur Sportmedizin, vol. 72, no. 7, pp. 359–364, 2021. [9] A. Curtiss, B. Rothrock, A. Bakar, N. Arora, J. Huang, Z. Englhardt, A. P. Empedrado, C. Wang, C. Ahmed, Y. Zhang, N. Alshurafa, and J. Hester, ‘‘FaceBit: Smart face masks platform,’’ Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 5, no. 4, p. 151:1–151:44, 2021. [10] G. Reychler, C. V. Straeten, A. Schalkwijk, and W. Poncin, ‘‘Effects of surgical and cloth facemasks during a submaximal exercise test in healthy adults,’’ Respiratory Med., vol. 186, Sep. 2021, Art. no. 106530. [11] E. T. Poon, C. Zheng, and S. H. Wong, ‘‘Effect of wearing surgical face masks during exercise: Does intensity matter?’’ Frontiers Physiol., vol. 12, Jan. 2021, Art. no. 775750. [12] A. Scarano, F. Inchingolo, B. Rapone, F. Festa, S. R. Tari, and F. Lorusso, ‘‘Protective face masks: Effect on the oxygenation and heart rate status of oral surgeons during surgery,’’ Int. J. Environ. Res. Public Health, vol. 18, no. 5, p. 2363, Feb. 2021. [13] S. Sanei, D. Jarchi, and A. G. Constantinides, Body Sensor Networking, Design and Algorithms. Hoboken, NJ, USA: Wiley, 2020. [14] D. Jarchi, J. Pope, T. K. M. Lee, L. Tamjidi, A. Mirzaei, and S. Sanei, ‘‘A review on accelerometry-based gait analysis and emerging clinical applications,’’ IEEE Rev. Biomed. Eng., vol. 11, pp. 177–194, 2018. [15] A. Procházka, H. Charvátová, S. Vaseghi, and O. Vyšata, ‘‘Machine learning in rehabilitation assessment for thermal and heart rate data processing,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 6, pp. 1209–12141, Apr. 2018. [16] A. Procházka, O. Vyšata, H. Charvátová, and M. Vališ, ‘‘Motion symmetry evaluation using accelerometers and energy distribution,’’ Symmetry, vol. 11, no. 7, p. 871, Jul. 2019. [17] H. Charvátová, A. Procházka, S. Vaseghi, O. Vyšata, and M. Vališ, ‘‘GPSbased analysis of physical activities using positioning and heart rate cycling data,’’ Signal, Image Video Process., vol. 11, no. 2, pp. 251–258, Feb. 2017. [18] A. Procházka, H. Charvátová, O. Vyšata, D. Jarchi, and S. Sanei, ‘‘Discrimination of cycling patterns using accelerometric data and deep learning techniques,’’ Neural Comput. Appl., vol. 33, no. 13, pp. 7603–7613, Jul. 2021. [19] A. Procházka, S. Vaseghi, H. Charvátová, O. Ťupa, and O. Vyšata, ‘‘Cycling segments multimodal analysis and classification using neural networks,’’ Appl. Sci., vol. 7, no. 6, p. 581, Jun. 2017. [20] E. Hostalkova, O. Vysata, and A. Prochazka, ‘‘Multi-dimensional biomedical image de-noising using Haar transform,’’ in Proc. 15th Int. Conf. Digit. Signal Process., Cardiff, U.K., Jul. 2007, pp. 175–179. [21] E. Jerhotová, J. Švihlík, and A. Procházka, Biomedical Image Volumes Denoising via the Wavelet Transform. Berlin, Germany: Springer, 2011, pp. 435–458. [22] B. Langari, S. Vaseghi, A. Prochazka, B. Vaziri, and F. T. Aria, ‘‘Edgeguided image gap interpolation using multi-scale transformation,’’ IEEE Trans. Image Process., vol. 25, no. 9, pp. 4394–4405, Sep. 2016. [23] K. Mutlu, J. E. Rabell, P. M. del Olmo, and S. Haesler, ‘‘IR thermographybased monitoring of respiration phase without image segmentation,’’ J. Neurosci. Methods, vol. 301, pp. 1–8, May 2018. [24] A. Procházka, H. Charvátová, O. Vyšata, J. Kopal, and J. Chambers, ‘‘Breathing analysis using thermal and depth imaging camera video records,’’ Sensors, vol. 17, no. 6, p. 1408, Jun. 2017. [25] A. Procházka, O. Vyšata, and V. Mařík, ‘‘Integrating the role of computational intelligence and digital signal processing in education: Emerging technologies and mathematical tools,’’ IEEE Signal Process. Mag., vol. 38, no. 3, pp. 154–162, Apr. 2021. [26] M. Fričl, ‘‘Video processing methods in thermographic analysis,’’ M.S. thesis, Dept. Comput. Control Eng., Univ. Chem. Technol., Technicka, Prague, Czechia, Jun. 2022. [Online]. Available: https://repozitar.vscht.cz/api/presentation/1.0/download/ ae50e15c-0154-46f6-82aa-36b35e4387cc/ [27] R. Abedalmoniam and S. Fadul, ‘‘Oxygen level measurement techniques: Pulse oximetry,’’ SUST J. Syst., vol. 2, pp. 1–5, 2015. [28] B. Anupama and K. Ravishankar, ‘‘Working mechanism and utility of pulse oximeter,’’ Int. J. Sport, Exercise Health Res., vol. 2, no. 2, pp. 111–113, 2018. [29] J. L. Mildenhall, ‘‘The theory and application of pulse oximetry,’’ J. Paramedic Pract., vol. 1, no. 2, pp. 52–58, Nov. 2008. [30] L. Hooseok, H. Ko, and J. Lee, ‘‘Reflectance pulse oximetry: Practical issues and limitations,’’ Scence Direct, Korean Inst. Commun. Inf. Sci., vol. 2, pp. 195–198, Dec. 2016. [31] T. Dünnwald, R. Kienast, D. Niederseer, and M. Burtscher, ‘‘The use of pulse oximetry in the assessment of acclimatization to high altitude,’’ Sensors, vol. 21, no. 4, p. 1263, Feb. 2021. [32] S. D. Din, A. Hickey, N. Hurwitz, J. C. Mathers, L. Rochester, and A. Godfrey, ‘‘Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age,’’ Physiol. Meas., vol. 37, no. 10, pp. 1785–1797, 2016. [33] O. Dostál, A. Procházka, O. Vyšata, O. Ťupa, P. Cejnar, and M. Vališ, ‘‘Recognition of motion patterns using accelerometers for ataxic gait assessment,’’ Neural Comput. Appl., vol. 33, no. 7, pp. 2207–2215, Apr. 2021. [34] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, ‘‘A survey on deep learning techniques for image and video semantic segmentation,’’ Appl. Soft Comput., vol. 70, pp. 41–65, Sep. 2018. [35] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, ‘‘Review the state-of-the-art technologies of semantic segmentation based on deep learning,’’ Neurocomputing, vol. 493, pp. 626–646, Jul. 2022. [36] C. Sager, C. Janiesch, and P. Zschech, ‘‘A survey of image labelling for computer vision applications,’’ J. Bus. Anal., vol. 4, no. 2, pp. 91–110, Jul. 2021. [37] S. L. Shein, S. Whitticar, K. K. Mascho, E. Pace, R. Speicher, and K. Deakins, ‘‘The effects of wearing facemasks on oxygenation and ventilation at rest and during physical activity,’’ PLoS ONE, vol. 16, no. 2, Feb. 2021, Art. no. e0247414. [38] R. P. Spang and K. Pieper, ‘‘The tiny effects of respiratory masks on physiological, subjective, and behavioral measures under mental load in a randomized controlled trial,’’ Sci. Rep., vol. 11, no. 1, p. 19601, Dec. 2021. [39] I. Wojtasz, S. Cofta, P. Czudaj, K. Jaracz, and R. Kaźmierski, ‘‘Effect of face masks on blood saturation, heart rate, and well-being indicators in health care providers working in specialized COVID-19 center,’’ Int. J. Environ. Res. Public Health, vol. 19, no. 3, p. 1397, Jan. 2022. [40] J. T. Brooks and J. C. R. Butter, ‘‘Effectiveness of mask wearing to control community spread of SARS-CoV-2,’’ J. Amer. Med. Assoc., vol. 325, pp. 998–999, Mar. 2021. [41] S. Yang, C. Fang, X. Liu, Y. Liu, S. Huang, R. Wang, and F. Qi, ‘‘Surgical masks affect the peripheral oxygen saturation and respiratory rate of anesthesiologists,’’ Frontiers Med., vol. 9, Apr. 2022, Art. no. 844710. | |
utb.fulltext.sponsorship | This work was supported in part by the Development of Advanced Computational Algorithms for Evaluating Post-Surgery Rehabilitation under Grant LTAIN19007; and in part by the National Sustainability Program Project of the Ministry of Education, Youth and Sports of the Czech Republic under Grant LO1303 (MSMT-7778/2014). | |
utb.wos.affiliation | [Charvatova, Hana] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic; [Prochazka, Ales; Fricl, Matej] Univ Chem & Technol Prague, Dept Comp & Control Engn, Prague, Czech Republic; [Prochazka, Ales] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 16000, Czech Republic; [Prochazka, Ales] Charles Univ Hradec Kralove, Dept Neurol, Fac Med, Hradec Kralove, Czech Republic | |
utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlín, Czech Republic; Department of Computing and Control Engineering, University of Chemistry and Technology at Prague, Prague, Czech Republic; Department of Neurology, Faculty of Medicine, Charles University at Hradec Králové, Hradec Králové, Czech Republic | |
utb.fulltext.projects | LTAIN19007 | |
utb.fulltext.projects | LO1303 (MSMT-7778/2014) | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - | |
utb.identifier.jel | - |