Publikace UTB
Repozitář publikační činnosti UTB

Effect of nano-sized poly(butyl acrylate) layer grafted from graphene oxide sheets on the compatibility and beta-phase development of poly(vinylidene fluoride) and their vibration sensing performance

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Effect of nano-sized poly(butyl acrylate) layer grafted from graphene oxide sheets on the compatibility and beta-phase development of poly(vinylidene fluoride) and their vibration sensing performance en
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Ilčíková, Markéta
dc.contributor.author Osička, Josef
dc.contributor.author Kutálková, Erika
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022-05-21
utb.relation.volume 23
utb.relation.issue 10
dc.citation.spage 5777
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/ijms23105777
dc.relation.uri https://www.mdpi.com/1422-0067/23/10/5777
dc.subject SI-ATRP en
dc.subject graphene oxide en
dc.subject poly(vinylidene fluoride) en
dc.subject dielectric properties en
dc.subject compatibility en
dc.subject vibration sensing en
dc.subject d(33) en
dc.description.abstract In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit nearly 0 degrees for neat GO and 102 degrees for GO-PBA. Then, the neat GO and GO-PBA particles were mixed with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer acts as plasticizer and shifts glass transition temperature from -38.7 degrees C for neat PVDF to 45.2 degrees C for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed and the piezoelectric constant in the thickness mode, d(33), was calculated and its electrical load independency were confirmed. Received values of the d(33) were for neat PVDF 14.7 pC/N, for PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the vibration sensing and thus providing very promising systems for structural health monitoring and data harvesting. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1010995
utb.identifier.obdid 43884106
utb.identifier.scopus 2-s2.0-85130308653
utb.identifier.wok 000801952700001
utb.identifier.pubmed 35628584
utb.source J-wok
dc.date.accessioned 2022-06-10T07:48:32Z
dc.date.available 2022-06-10T07:48:32Z
dc.description.sponsorship Czech Science Foundation [19-17457S]; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/003]
dc.description.sponsorship RP/CPS/2022/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 19-17457S
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.ou Department of Physics and Materials Engineering
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Ilčíková, Markéta
utb.contributor.internalauthor Osička, Josef
utb.contributor.internalauthor Kutálková, Erika
utb.fulltext.affiliation Miroslav Mrlik 1,* https://orcid.org/0000-0001-6203-6795 , Markéta Ilčíková 1,2,3,*, Josef Osička 1 https://orcid.org/0000-0002-4909-9350 and Erika Kutálková 1 1 Centre of Polymer Systems, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic; osicka@utb.cz (J.O.); ekutalkova@utb.cz (E.K.) 2 Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 45 Bratislava, Slovakia 3 Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic * Correspondence: mrlik@utb.cz (M.M.); ilcikova@utb.cz (M.I.)
utb.fulltext.dates Received: 20 April 2022 Accepted: 17 May 2022 Published: 21 May 2022
utb.fulltext.references 1. Kim, Y.K.; Lee, Y.; Shin, K.Y. Black phosphorus-based smart electrorheological fluid with tailored phase transition and exfoliation. J. Ind. Eng. Chem. 2020, 90, 333–340. http://doi.org/10.1016/j.jiec.2020.07.032 2. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Babayan, V.; Kucekova, Z.; Humpolicek, P.; Pavlinek, V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015, 5, 72816–72824. http://doi.org/10.1039/C5RA11968E 3. Lubtow, M.M.; Mrlik, M.; Hahn, L.; Altmann, A.; Beudert, M.; Luhmann, T.; Luxenhofer, R. Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-meth yl-2-oxazoline)-Based Thermogelling Hydrogel. J. Func. Biomater. 2019, 10, 36. http://doi.org/10.3390/jfb10030036 http://www.ncbi.nlm.nih.gov/pubmed/31394886 4. Krupa, I.; Sobolciak, P.; Mrlik, M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials 2020, 10, 77. http://doi.org/10.3390/nano10010077 http://www.ncbi.nlm.nih.gov/pubmed/31906164 5. Czanikova, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasak, P.; Pavlova, E.; Racko, D.; Chodak, I.; Omastova, M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B Chem. 2013, 186, 701–710. http://doi.org/10.1016/j.snb.2013.06.054 6. Gaca, M.; Ilcikova, M.; Mrlik, M.; Cvek, M.; Vaulot, C.; Urbanek, P.; Pietrasik, R.; Krupa, I.; Pietrasik, J. Impact of ionic liquids on the processing and photo-actuation behavior of SBR composites containing graphene nanoplatelets. Sens. Actuator B Chem. 2021, 329. http://doi.org/10.1016/j.snb.2020.129195 7. Yang, W.X.; Li, Y.G.; Feng, L.; Hou, Y.M.; Wang, S.; Yang, B.; Hu, X.M.; Zhang, W.; Ramakrishna, S. GO/Bi(2)S(3)Doped PVDF/TPU Nanofiber Membrane with Enhanced Photothermal Performance. Int. J. Mol. Sci. 2020, 21, 4224. http://doi.org/10.3390/ijms21124224 8. Mrlik, M.; Spirek, M.; Al-Khori, J.; Ahmad, A.A.; Mosnacek, J.; AlMaadeed, M.A.; Kasak, P. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arab. J. Chem. 2020, 13, 193–204. http://doi.org/10.1016/j.arabjc.2017.03.009 9. Li, Q.Q.; Ke, W.Y.; Chang, T.X.; Hu, Z.J. A molecular ferroelectrics induced electroactive phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C 2019, 7, 1532–1543. http://doi.org/10.1039/C8TC05090B 10. Thuau, D.; Kallitsis, K.; Dos Santos, F.D.; Hadziioannou, G. All inkjet-printed piezoelectric electronic devices: Energy generators, sensors and actuators. J. Mater. Chem. C 2017, 5, 9963–9966. http://doi.org/10.1039/C7TC02558K 11. Liu, J.F.; Shang, Y.H.; Shao, Z.Z.; Liu, X.G.; Zhang, C.H. Three-Dimensional Printing to Translate Simulation to Architecting for Three-Dimensional High Performance Piezoelectric Energy Harvester. Ind. Eng. Chem. Res. 2022, 61, 433–440. http://doi.org/10.1021/acs.iecr.1c04433 12. Paria, S.; Karan, S.K.; Bera, R.; Das, A.K.; Maitra, A.; Khatua, B.B. A Facile Approach To Develop a Highly Stretchable PVC/ZnSnO3 Piezoelectric Nanogenerator with High Output Power Generation for Powering Portable Electronic Devices. Ind. Eng. Chem. Res. 2016, 55, 10671–10680. http://doi.org/10.1021/acs.iecr.6b02172 13. Panwar, V.; Anoop, G. Enhanced sensing performance of carboxyl graphene-ionic liquid attached ionic polymer-metal nanocomposite based polymer strain sensors. J. Mater. Chem. C 2018, 6, 8395–8404. http://doi.org/10.1039/C8TC02360C 14. Pu, J.A.; Yan, X.J.; Jiang, Y.D.; Chang, C.E.; Lin, L.W. Piezoelectric actuation of direct-write electrospun fibers. Sens. Actuator A Phys. 2010, 164, 131–136. http://doi.org/10.1016/j.sna.2010.09.019 15. Yi, J.G.; Liang, H. A PVDF-based deformation and motion sensor: Modeling and experiments. IEEE Sens. J. 2008, 8, 384–391. http://doi.org/10.1109/jsen.2008.917483 16. Yin, F.X.; Li, X.X.; Peng, H.F.; Li, F.; Yang, K.; Yuan, W.J. A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sens. Actuator B Chem. 2019, 285, 179–185. http://doi.org/10.1016/j.snb.2019.01.063 17. Roy, K.; Ghosh, S.K.; Sultana, A.; Garain, S.; Xie, M.Y.; Bowen, C.R.; Henkel, K.; Schmeisser, D.; Mandal, D. A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025. http://doi.org/10.1021/acsanm.9b00033 18. Moghadam, B.H.; Hasanzadeh, M.; Simchi, A. Self-Powered Wearable Piezoelectric Sensors Based on Polymer NanofiberMetal-Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Appl. Nano Mater. 2020, 3, 8742–8752. http://doi.org/10.1021/acsanm.0c01551 19. Bhalla, S.; Kaur, N. Prognosis of low-strain fatigue induced damage in reinforced concrete structures using embedded piezotransducers. Int. J. Fatigue 2018, 113, 98–112. http://doi.org/10.1016/j.ijfatigue.2018.04.002 20. Pearson, M.R.; Eaton, M.J.; Pullin, R.; Featherston, C.A.; Holford, K.M. Energy Harvesting for Aerospace Structural Health Monitoring Systems. In Modern Practice in Stress and Vibration Analysis 2012; IOP Publishing Ltd.: Bristol, UK, 2012; Volume 382. 21. Zelenika, S.; Hadas, Z.; Bader, S.; Becker, T.; Gljušćić, P.; Hlinka, J.; Janak, L.; Kamenar, E.; Ksica, F.; Kyratsi, T.; et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors 2020, 20, 6685. http://doi.org/10.3390/s20226685 22. Yan, R.Q.; Gao, R.X. Approximate Entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Proc. 2007, 21, 824–839. http://doi.org/10.1016/j.ymssp.2006.02.009 23. Balamurugan, V.; Narayanan, S. A piezolaminated composite degenerated shell finite element for active control of structures with distributed piezosensors and actuators. Smart Mater. Struct. 2008, 17, 18. http://doi.org/10.1088/0964-1726/17/3/035031 24. Wei, H.G.; Wang, H.; Xia, Y.J.; Cui, D.P.; Shi, Y.P.; Dong, M.Y.; Liu, C.T.; Ding, T.; Zhang, J.X.; Ma, Y.; et al. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 2018, 6, 12446–12467. http://doi.org/10.1039/C8TC04515A 25. Wang, H.; Lin, H.T.; Wereszczak, A.A. Strength Properties of Poled Lead Zirconate Titanate Subjected to Biaxial Flexural Loading in High Electric Field. J. Am. Ceram. Soc. 2010, 93, 2843–2849. http://doi.org/10.1111/j.1551-2916.2010.03800.x 26. Issa, A.A.; Al-Maadeed, M.; Luyt, A.S.; Mrlik, M.; Hassan, M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano)fibers. J. Appl. Polym. Sci. 2016, 133, 12. http://doi.org/10.1002/app.43594 27. Gharib, A.; Karimi, M.S.; Arani, A.G. Vibration analysis of the embedded piezoelectric polymeric nano-composite panels in the elastic substrate. Compos. Part B Eng. 2016, 101, 64–76. http://doi.org/10.1016/j.compositesb.2016.06.077 28. Ghafari, E.; Lu, N. Self-polarized electrospun polyvinylidene fluoride (PVDF) nanofiber for sensing applications. Compos. Part B Eng. 2019, 160, 1–9. http://doi.org/10.1016/j.compositesb.2018.10.011 29. Bae, J.H.; Chang, S.H. A new approach to fabricate poly(vinylidene fluoride-trifluoroethylene) fibers using a torsion-stretching method and characterization of their piezoelectric properties. Compos. Part B Eng. 2016, 99, 112–120. http://doi.org/10.1016/j.compositesb.2016.06.037 30. Gaur, A.; Shukla, R.; Brajesh, K.; Pal, A.; Chatterji, S.; Ranjan, R.; Maiti, P. Processing and nanoclay induced piezoelectricity in poly(vinylidene fluoride-co-hexafluoro propylene) nanohybrid for device application. Polymer 2016, 97, 362–369. http://doi.org/10.1016/j.polymer.2016.05.049 31. Yuan, D.; Li, Z.B.; Thitsartarn, W.; Fan, X.S.; Sun, J.T.; Li, H.; He, C.B. beta phase PVDF-hfp induced by mesoporous SiO2 nanorods: Synthesis and formation mechanism. J. Mater. Chem. C 2015, 3, 3708–3713. http://doi.org/10.1039/C5TC00005J 32. Sahoo, R.; Mishra, S.; Unnikrishnan, L.; Mohanty, S.; Mahapatra, S.; Nayak, S.K.; Anwar, S.; Ramadoss, A. Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films. Mater. Sci. Semicond. Process. 2020, 117, 9. http://doi.org/10.1016/j.mssp.2020.105173 33. Huang, W.J.; Li, Z.P.; Chen, X.; Tian, P.F.; Lu, J.; Zhou, Z.W.; Huang, R.; Hui, D.; He, L.P.; Zhang, C.L.; et al. Pressure-controlled growth of piezoelectric low-dimensional structures in ternary fullerene C60/carbon nanotube/poly (vinylidene fluoride) based hybrid composites. Compos. Part B Eng. 2014, 62, 126–136. http://doi.org/10.1016/j.compositesb.2014.02.026 34. Huang, L.Y.; Lu, C.X.; Wang, F.; Wang, L. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv. 2014, 4, 45220–45229. http://doi.org/10.1039/C4RA07379G 35. Siponkoski, T.; Nelo, M.; Palosaari, J.; Perantie, J.; Sobocinski, M.; Juuti, J.; Jantunen, H. Electromechanical properties of PZT/P(VDF-TrFE) composite ink printed on a flexible organic substrate. Compos. Part B Eng. 2015, 80, 217–222. http://doi.org/10.1016/j.compositesb.2015.05.018 36. Cai, J.; Hu, N.; Wu, L.K.; Liu, Y.H.; Li, Y.; Ning, H.M.; Liu, X.Y.; Lin, L.Y. Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Compos. Part A Appl. Sci. Manuf. 2019, 121, 223–231. http://doi.org/10.1016/j.compositesa.2019.03.031 37. Thangavel, E.; Ramasundaram, S.; Pitchaimuthu, S.; Hong, S.W.; Lee, S.Y.; Yoo, S.S.; Kim, D.E.; Ito, E.; Karig, Y.S. Structural and tribological characteristics of poly(vinylidene fluoride)/functionalized graphene oxide nanocomposite thin films. Compos. Sci. Technol. 2014, 90, 187–192. http://doi.org/10.1016/j.compscitech.2013.11.007 38. Jaleh, B.; Jabbari, A. Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 2014, 320, 339–347. http://doi.org/10.1016/j.apsusc.2014.09.030 39. Issa, A.A.; Al-Maadeed, M.A.S.; Mrlik, M.; Luyt, A.S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J. Polym. Res. 2016, 23, 13. http://doi.org/10.1007/s10965-016-1126-y 40. Sencadas, V.; Gregorio, R.; Lanceros-Mendez, S. alpha to beta Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. Part B Phys. 2009, 48, 514–525. http://doi.org/10.1080/00222340902837527 41. Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. http://doi.org/10.1016/j.progpolymsci.2013.07.006 42. Liu, G.M.; Schneider, K.; Zheng, L.C.; Zhang, X.Q.; Li, C.C.; Stamm, M.; Wang, D.J. Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer 2014, 55, 2588–2596. http://doi.org/10.1016/j.polymer.2014.03.055 43. Salimi, A.; Yousefi, A.A. FTIR studies of beta-phase crystal formation in stretched PVDF films. Polym. Test 2003, 22, 699–704. http://doi.org/10.1016/S0142-9418(03)00003-5 44. Fang, J.; Niu, H.T.; Wang, H.X.; Wang, X.G.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013, 6, 2196–2202. http://doi.org/10.1039/c3ee24230g 45. Castkova, K.; Kastyl, J.; Sobola, D.; Petrus, J.; Stastna, E.; Riha, D.; Tofel, P. Structure-Properties Relationship of Electrospun PVDF Fibers. Nanomaterials 2020, 10, 1221. http://doi.org/10.3390/nano10061221 http://www.ncbi.nlm.nih.gov/pubmed/32585824 46. Ponnamma, D.; Parangusan, H.; Tanvir, A.; AlMa’adeed, M.A. Smart and robust electrospun fabrics of piezoelectric polymer nanocomposite for self-powering electronic textiles. Mater. Des. 2019, 184, 10. http://doi.org/10.1016/j.matdes.2019.108176 47. Florczak, S.; Lorson, T.; Zheng, T.; Mrlik, M.; Hutmacher, D.W.; Higgins, M.J.; Luxenhofer, R.; Dalton, P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019, 68, 735–745. http://doi.org/10.1002/pi.5759 48. Huan, Y.; Liu, Y.Y.; Yang, Y.F.; Wu, Y.N. Influence of extrusion, stretching and poling on the structural and piezoelectric properties of poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J. Appl. Polym. Sci. 2007, 104, 858–862. http://doi.org/10.1002/app.25603 49. Lee, C.; Tarbutton, J.A. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 2014, 23, 7. http://doi.org/10.1088/0964-1726/23/9/095044 50. Zygo, M.; Mrlik, M.; Ilcikova, M.; Hrabalikova, M.; Osicka, J.; Cvek, M.; Sedlacik, M.; Hanulikova, B.; Munster, L.; Skoda, D.; et al. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials 2020, 10, 591. http://doi.org/10.3390/nano10030591 51. Ilcikova, M.; Mrlik, M.; Spitalsky, Z.; Micusik, M.; Csomorova, K.; Sasinkova, V.; Kleinova, A.; Mosnacek, J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015, 5, 3370–3376. http://doi.org/10.1039/C4RA12915F 52. Kultravut, K.; Kuboyama, K.; Sedlarik, V.; Mrlik, M.; Osicka, J.; Drohsler, P.; Ougizawa, T. Localization of Poly(glycidyl methacrylate) Grafted on Reduced Graphene Oxide in Poly(lactic acid)/Poly(trimethylene terephthalate) Blends for Composites with Enhanced Electrical and Thermal Conductivities. Acs Appl. Nano Mater. 2021, 4, 8511–8519. http://doi.org/10.1021/acsanm.1c01843 53. Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Munster, L.; Pavlinek, V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50, 2189–2200. http://doi.org/10.1021/acs.macromol.6b02041 54. Osicka, J.; Ilcikova, M.; Mrlik, M.; Minarik, A.; Pavlinek, V.; Mosnacek, J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers 2017, 9, 264. http://doi.org/10.3390/polym9070264 http://www.ncbi.nlm.nih.gov/pubmed/30970942 55. Kutalkova, E.; Mrlik, M.; Ilcikova, M.; Osicka, J.; Sedlacik, M.; Mosnacek, J. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting. Nanomaterials 2019, 9, 308. http://doi.org/10.3390/nano9020308 56. Mrlik, M.; Ilcikova, M.; Plachy, T.; Moucka, R.; Pavlinek, V.; Mosnacek, J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate). J. Ind. Eng. Chem. 2018, 57, 104–112. http://doi.org/10.1016/j.jiec.2017.08.013 57. Tanvir, A.; Sobolciak, P.; Popelka, A.; Mrlik, M.; Spitalsky, Z.; Micusik, M.; Prokes, J.; Krupa, I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene). Polymers 2019, 11, 1272. http://doi.org/10.3390/polym11081272 58. Preda, F.M.; Alegria, A.; Bocahut, A.; Fillott, L.A.; Long, D.R.; Sotta, P. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides. Macromolecules 2015, 48, 5730–5741. http://doi.org/10.1021/acs.macromol.5b01295 59. Mrlik, M.; Leadenham, S.; AlMaadeed, M.A.; Erturk, A. Figure of merit comparison of PP-based electret and PVDF-based piezoelectric polymer energy harvesters. In Active and Passive Smart Structures and Integrated Systems 2016; Park, G., Ed.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2016; Volume 9799. 60. Chamakh, M.M.; Mrlík, M.; Leadenham, S.; Bažant, P.; Osička, J.; AlMaadeed, M.A.A.; Erturk, A.; Kuřitka, I. Vibration Sensing Systems Based on Poly(Vinylidene Fluoride) and Microwave-Assisted Synthesized ZnO Star-Like Particles with Controllable Structural and Physical Properties. Nanomaterials 2020, 10, 2345. http://doi.org/10.3390/nano10122345 61. Zhang, W.L.; Liu, Y.D.; Choi, H.J.; Kim, S.G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces 2012, 4, 2267–2272. http://doi.org/10.1021/am300267f 62. Wu, Y.H.; Cao, R.; Wu, G.X.; Huang, W.C.; Chen, Z.; Yang, X.M.; Tu, Y.F. From ultratough artificial nacre to elastomer: Poly (n-butyl acrylate) grafted graphene oxide nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 156–164. http://doi.org/10.1016/j.compositesa.2016.05.028 63. Osicka, J.; Mrlik, M.; Ilcikova, M.; Krupa, I.; Sobolciak, P.; Plachy, T.; Mosnacek, J. Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. React. Funct. Polym. 2020, 148, 8. http://doi.org/10.1016/j.reactfunctpolym.2020.104487 64. Ji, X.Y.; Chen, D.Y.; Zheng, Y.; Shen, J.B.; Guo, S.Y.; Harkin-Jones, E. Multilayered assembly of poly(vinylidene fluoride) and poly(methyl methacrylate) for achieving multi-shape memory effects. Chem. Eng. J. 2019, 362, 190–198. http://doi.org/10.1016/j.cej.2019.01.016 65. Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Slouf, M.; Zhigunov, A.; Koynov, K.; Mosnacek, J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014, 3, 999–1003. http://doi.org/10.1021/mz500444m 66. Atorngitjawat, P. Effects of Processing Conditions and Crystallization on Dynamic Relaxations in Semicrystalline Poly(vinylidene fluoride) Films. Macromol. Res. 2017, 25, 391–399. http://doi.org/10.1007/s13233-017-5060-6 67. Frubing, P.; Wang, F.P.; Wagener, M. Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene. Appl. Phys. A Mater. Sci. Process. 2012, 107, 603–611. http://doi.org/10.1007/s00339-012-6838-1 68. Correia, D.M.; Costa, C.M.; Serra, R.S.I.; Tejedor, J.A.G.; Biosca, L.T.; Bermudez, V.D.; Esperanca, J.; Reis, P.M.; Balado, A.A.; Meseguer-Duenas, J.M.; et al. Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer 2019, 171, 58–69. http://doi.org/10.1016/j.polymer.2019.03.032 69. Costa, C.M.; Serra, R.S.I.; Balado, A.A.; Ribelles, J.L.G.; Lanceros-Mendez, S. Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O-3 composites. Polymer 2020, 204, 9. http://doi.org/10.1016/j.polymer.2020.122811 70. Galeziewska, M.; Lipinska, M.; Mrlik, M.; Ilcikova, M.; Gajdosova, V.; Slouf, M.; Achbergerová, E.; Musilová, L.; Mosnacek, J.; Pietrasik, J. Polyacrylamide brushes with varied morphologies as a tool for control of the intermolecular interactions within EPDM/MVQ blends. Polymer 2021, 215, 123387. http://doi.org/10.1016/j.polymer.2021.123387 71. Moucka, R.; Mrlik, M.; Ilcikova, M.; Spitalsky, Z.; Kazantseva, N.; Bober, P.; Stejskal, J. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chem. Pap. 2013, 67, 1012–1019. http://doi.org/10.2478/s11696-013-0351-7 72. Shehata, N.; Kandas, I.; Hassounah, I.; Sobolciak, P.; Krupa, I.; Mrlik, M.; Popelka, A.; Steadman, J.; Lewis, R. Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers. Nanomaterials 2018, 8, 585. http://doi.org/10.3390/nano8080585
utb.fulltext.sponsorship Authors acknowledge the Czech Science Foundation grant No. 19-17457S for the financial support. The authors also gratefully acknowledge the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2022/003).
utb.wos.affiliation [Mrlik, Miroslav; Ilcikova, Marketa; Osicka, Josef; Kutalkova, Erika] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic; [Ilcikova, Marketa] Slovak Acad Sci, Polymer Inst, Dubrayska Cesta 9, Bratislava 84545, Slovakia; [Ilcikova, Marketa] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic; Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 45, Slovakia; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic
utb.fulltext.projects 19-17457S
utb.fulltext.projects RP/CPS/2022/003
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Physics and Materials Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International