Publikace UTB
Repozitář publikační činnosti UTB

DNA functionalized spider silk nanohydrogels for specific cell attachment and patterning

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title DNA functionalized spider silk nanohydrogels for specific cell attachment and patterning en
dc.contributor.author Heinritz, Christina
dc.contributor.author Lamberger, Zan
dc.contributor.author Kocourková, Karolína
dc.contributor.author Minařík, Antonín
dc.contributor.author Humenik, Martin
dc.relation.ispartof ACS Nano
dc.identifier.issn 1936-0851 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1936-086X Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 16
utb.relation.issue 5
dc.citation.spage 7626
dc.citation.epage 7635
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acsnano.1c11148
dc.relation.uri https://pubs.acs.org/doi/10.1021/acsnano.1c11148
dc.subject self-assembly en
dc.subject nanofibrils en
dc.subject nanohydrogels en
dc.subject DNA modification en
dc.subject cells en
dc.subject surfaces en
dc.subject patterning en
dc.description.abstract Nucleated protein self-assembly of an azido modified spider silk protein was employed in the preparation of nanofibrillar networks with hydrogel-like properties immobilized on coatings of the same protein. Formation of the networks in a mild aqueous environment resulted in thicknesses between 2 and 60 nm, which were controlled only by the protein concentration. Incorporated azido groups in the protein were used to "click" short nucleic acid sequences onto the nanofibrils, which were accessible to specific hybridization-based modifications, as proved by fluorescently labeled DNA complements. A lipid modifier was used for efficient incorporation of DNA into the membrane of nonadherent Jurkat cells. Based on the complementarity of the nucleic acids, highly specific DNA-assisted immobilization of the cells on the nanohydrogels with tunable cell densities was possible. Addressability of the DNA cell-to-surface anchor was demonstrated with a competitive oligonucleotide probe, resulting in a rapid release of 75-95% of cells. In addition, we developed a photolithography-based patterning of arbitrarily shaped microwells, which served to spatially define the formation of the nanohydrogels. After detaching the photoresist and PEG-blocking of the surface, DNA-assisted immobilization of the Jurkat cells on the nanohydrogel microstructures was achieved with high fidelity. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1010990
utb.identifier.obdid 43883913
utb.identifier.scopus 2-s2.0-85130355739
utb.identifier.wok 000820339000001
utb.source j-scopus
dc.date.accessioned 2022-06-10T07:48:32Z
dc.date.available 2022-06-10T07:48:32Z
dc.description.sponsorship CZ.02.2.69/0.0/0.0/19_073/0016941, LTAB19019; JC-2019-21; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.description.sponsorship Bavarian-Czech Academic Agency (Bayerisch-Tschechische Hochschulagentur) BTHA [JC-2019-21]; Ministry of Education, Youth and Sports of the Czech Republic, BTHA/BAYHOST project [LTAB19019]; project OP RDE Junior Grant of Tomas Bata University in Zlin [CZ.02.2.69/0.0/0.0/19_073/0016941]
utb.ou Centre of Polymer Systems
utb.ou Department of Physics and Materials Engineering
utb.contributor.internalauthor Kocourková, Karolína
utb.contributor.internalauthor Minařík, Antonín
utb.fulltext.affiliation Christina Heinritz,⊥ Zan Lamberger,⊥ Karolína Kocourková, Antonín Minařík, and Martin Humenik* Corresponding Author Martin Humenik − Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, 95447 Bayreuth, Germany; orcid.org/0000-0002-2097-8941; Email: martin.humenik@bm.uni-bayreuth.de Authors Christina Heinritz − Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, 95447 Bayreuth, Germany Zan Lamberger − Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, 95447 Bayreuth, Germany; Present Address: Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany Karolína Kocourková − Department of Physics and Materials Engineering, Tomas Bata University in Zlín, 76001 Zlín, Czech Republic Antonín Minařík − Centre of Polymer Systems, Tomas Bata University in Zlín, 76001 Zlín, Czech Republic; Department of Physics and Materials Engineering, Tomas Bata University in Zlín, 76001 Zlín, Czech Republic; orcid.org/0000-0002-0055-675X Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.1c11148 Author Contributions ⊥These authors contributed equally to this work.
utb.fulltext.dates Received: December 15, 2021 Accepted: May 3, 2022 Published: May 6, 2022
utb.fulltext.references (1) Gomes, S.; Leonor, I. B.; Mano, J. F.; Reis, R. L.; Kaplan, D. L. Natural and Genetically Engineered Proteins for Tissue Engineering. Prog. Polym. Sci. 2012, 37, 1−17. (2) Okamoto, M.; John, B. Synthetic Biopolymer Nanocomposites for Tissue Engineering Scaffolds. Prog. Polym. Sci. 2013, 38, 1487−1503. (3) Oliveira, M. B.; Mano, J. F. High-Throughput Screening for Integrative Biomaterials Design: Exploring Advances and New Trends. Trends Biotechnol. 2014, 32, 627−636. (4) Yliperttula, M.; Chung, B. G.; Navaladi, A.; Manbachi, A.; Urtti, A. High-Throughput Screening of Cell Responses to Biomaterials. Eur. J. Pharm. Sci. 2008, 35, 151−160. (5) Simon, C. G., Jr.; Lin-Gibson, S. Combinatorial and High-Throughput Screening of Biomaterials. Adv. Mater. 2011, 23, 369−387. (6) Yang, L.; Pijuan-Galito, S.; Rho, H. S.; Vasilevich, A. S.; Eren, A. D.; Ge, L.; Habibović, P.; Alexander, M. R.; de Boer, J.; Carlier, A.; van Rijn, P.; Zhou, Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem. Rev. 2021, 121, 4561−4677. (7) Tronser, T.; Popova, A. A.; Levkin, P. A. Miniaturized Platform for High-Throughput Screening of Stem Cells. Curr. Opin. Biotechnol. 2017, 46, 141−149. (8) Harkness, T.; McNulty, J. D.; Prestil, R.; Seymour, S. K.; Klann, T.; Murrell, M.; Ashton, R. S.; Saha, K. High-Content Imaging with Micropatterned Multiwell Plates Reveals Influence of Cell Geometry and Cytoskeleton on Chromatin Dynamics. Biotechnol. J. 2015, 10, 1555−1567. (9) Yoshii, Y.; Furukawa, T.; Waki, A.; Okuyama, H.; Inoue, M.; Itoh, M.; Zhang, M.-R.; Wakizaka, H.; Sogawa, C.; Kiyono, Y.; Yoshii, H.; Fujibayashi, Y.; Saga, T. High-Throughput Screening with Nanoimprinting 3d Culture for Efficient Drug Development by Mimicking the Tumor Environment. Biomaterials 2015, 51, 278−289. (10) Anderson, D. G.; Levenberg, S.; Langer, R. Nanoliter-Scale Synthesis of Arrayed Biomaterials and Application to Human Embryonic Stem Cells. Nat. Biotechnol. 2004, 22, 863−866. (11) Flaim, C. J.; Chien, S.; Bhatia, S. N. An Extracellular Matrix Microarray for Probing Cellular Differentiation. Nat. Meth. 2005, 2, 119−125. (12) Gobaa, S.; Hoehnel, S.; Roccio, M.; Negro, A.; Kobel, S.; Lutolf, M. P. Artificial Niche Microarrays for Probing Single Stem Cell Fate in High Throughput. Nat. Meth. 2011, 8, 949−955. (13) Beachley, V. Z.; Wolf, M. T.; Sadtler, K.; Manda, S. S.; Jacobs, H.; Blatchley, M. R.; Bader, J. S.; Pandey, A.; Pardoll, D.; Elisseeff, J. H. Tissue Matrix Arrays for High-Throughput Screening and Systems Analysis of Cell Function. Nat. Meth. 2015, 12, 1197−1204. (14) Dirscherl, C.; Springer, S. Protein Micropatterns Printed on Glass: Novel Tools for Protein-Ligand Binding Assays in Live Cells. Eng. Life Sci. 2018, 18, 124−131. (15) Chen, L.; Yan, C.; Zheng, Z. Functional Polymer Surfaces for Controlling Cell Behaviors. Mater. Today 2018, 21, 38−59. (16) Chiang, E. N.; Dong, R.; Ober, C. K.; Baird, B. A. Cellular Responses to Patterned Poly(Acrylic Acid) Brushes. Langmuir 2011, 27, 7016−7023. (17) Sevcsik, E.; Brameshuber, M.; Fölser, M.; Weghuber, J.; Honigmann, A.; Schütz, G. J. Gpi-Anchored Proteins Do Not Reside in Ordered Domains in the Live Cell Plasma Membrane. Nat. Commun. 2015, 6, 6969. (18) Barata, D.; van Blitterswijk, C.; Habibovic, P. High-Throughput Screening Approaches and Combinatorial Development of Biomaterials Using Microfluidics. Acta Biomater. 2016, 34, 1−20. (19) Suri, S.; Singh, A.; Nguyen, A. H.; Bratt-Leal, A. M.; McDevitt, T. C.; Lu, H. Microfluidic-Based Patterning of Embryonic Stem Cells for in Vitro Development Studies. Lab Chip 2013, 13, 4617−4624. (20) Yarmush, M. L.; King, K. R. Living-Cell Microarrays. Annu. Rev. Biomed. Eng. 2009, 11, 235−257. (21) Tourniaire, G.; Collins, J.; Campbell, S.; Mizomoto, H.; Ogawa, S.; Thaburet, J.-F.; Bradley, M. Polymer Microarrays for Cellular Adhesion. Chem. Commun. (Camb.) 2006, 2118−2120. (22) Date, A.; Pasini, P.; Daunert, S. Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation. In Whole Cell Sensing Systems I: Reporter Cells and Devices; Belkin, S., Gu, M. B., Eds.; Springer: Berlin, Heidelberg, 2010; pp 57−75. (23) Vermesh, U.; Vermesh, O.; Wang, J.; Kwong, G. A.; Ma, C.; Hwang, K.; Heath, J. R. High-Density, Multiplexed Patterning of Cells at Single-Cell Resolution for Tissue Engineering and Other Applications. Angew. Chem., Int. Ed. 2011, 50, 7378−7380. (24) Meyer, R.; Giselbrecht, S.; Rapp, B. E.; Hirtz, M.; Niemeyer, C. M. Advances in DNA-Directed Immobilization. Curr. Opin. Chem. Biol. 2014, 18, 8−15. (25) Schneider, A.-K.; Niemeyer, C. M. DNA Surface Technology − from Gene Sensors to Integrated Systems for Life Science and Materials Research. Angew. Chem., Int. Ed. 2018, 57, 16959−16967. (26) Scheideler, O. J.; Yang, C.; Kozminsky, M.; Mosher, K. I.; Falcón-Banchs, R.; Ciminelli, E. C.; Bremer, A. W.; Chern, S. A.; Schaffer, D. V.; Sohn, L. L. Recapitulating Complex Biological Signaling Environments Using a Multiplexed, DNA-Patterning Approach. Science Advances 2020, 6, No. eaay5696. (27) Chen, S.; Bremer, A. W.; Scheideler, O. J.; Na, Y. S.; Todhunter, M. E.; Hsiao, S.; Bomdica, P. R.; Maharbiz, M. M.; Gartner, Z. J.; Schaffer, D. V. Interrogating Cellular Fate Decisions with High-Throughput Arrays of Multiplexed Cellular Communities. Nat. Commun. 2016, 7, 10309. (28) Hsiao, S. C.; Shum, B. J.; Onoe, H.; Douglas, E. S.; Gartner, Z. J.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns. Langmuir 2009, 25, 6985−6991. (29) Todhunter, M. E.; Jee, N. Y.; Hughes, A. J.; Coyle, M. C.; Cerchiari, A.; Farlow, J.; Garbe, J. C.; LaBarge, M. A.; Desai, T. A.; Gartner, Z. J. Programmed Synthesis of Three-Dimensional Tissues. Nat. Meth. 2015, 12, 975−981. (30) Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M. J.; Kaplan, D. L. Biopolymer Nanofibrils: Structure, Modeling, Preparation, and Applications. Prog. Polym. Sci. 2018, 85, 1−56. (31) Ling, S.; Kaplan, D. L.; Buehler, M. J. Nanofibrils in Nature and Materials Engineering. Nat. Rev. Mater. 2018, 3, 18016. (32) Zhang, Y. S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, No. eaaf3627. (33) Humenik, M.; Magdeburg, M.; Scheibel, T. Influence of Repeat Numbers on Self-Assembly Rates of Repetitive Recombinant Spider Silk Proteins. J. Struct. Biol. 2014, 186, 431−437. (34) Humenik, M.; Smith, A. M.; Arndt, S.; Scheibel, T. Ion and Seed Dependent Fibril Assembly of a Spidroin Core Domain. J. Struct. Biol. 2015, 191, 130−138. (35) Humenik, M.; Mohrand, M.; Scheibel, T. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity. Bioconjugate Chem. 2018, 29, 898−904. (36) Humenik, M.; Scheibel, T. Nanomaterial Building Blocks Based on Spider Silk−Oligonucleotide Conjugates. ACS Nano 2014, 8, 1342−1349. (37) Humenik, M.; Drechsler, M.; Scheibel, T. Controlled Hierarchical Assembly of Spider Silk-DNA Chimeras into Ribbons and Raft-Like Morphologies. Nano Lett. 2014, 14, 3999−4004. (38) Zeplin, P. H.; Maksimovikj, N. C.; Jordan, M. C.; Nickel, J.; Lang, G.; Leimer, A. H.; Römer, L.; Scheibel, T. Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation. Adv. Funct. Mater. 2014, 24, 2658−2666. (39) Steiner, D.; Winkler, S.; Heltmann-Meyer, S.; Trossmann, V. T.; Fey, T.; Scheibel, T.; Horch, R. E.; Arkudas, A. Enhanced Vascularization and De Novo Tissue Formation in Hydrogels Made of Engineered Rgd-Tagged Spider Silk Proteins in the Arteriovenous Loop Model. Biofabrication 2021, 13, No. 045003. (40) Aigner, T. B.; DeSimone, E.; Scheibel, T. Biomedical Applications of Recombinant Silk-Based Materials. Adv. Mater. 2018, 30, 1704636. (41) Molina, A.; Scheibel, T.; Humenik, M. Nanoscale Patterning of Surfaces Via DNA Directed Spider Silk Assembly. Biomacromolecules 2019, 20, 347−352. (42) Humenik, M.; Preiß, T.; Gödrich, S.; Papastavrou, G.; Scheibel, T. Functionalized DNA-Spider Silk Nanohydrogels for Controlled Protein Binding and Release. Mater. Today Bio 2020, 6, 100045. (43) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted 3 + 2 Azide-Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046−15047. (44) Liu, H.; Kwong, B.; Irvine, D. J. Membrane Anchored Immunostimulatory Oligonucleotides for in Vivo Cell Modification and Localized Immunotherapy. Angewandte Chemie (International ed. in English) 2011, 50, 7052−7055. (45) Weber, R. J.; Liang, S. I.; Selden, N. S.; Desai, T. A.; Gartner, Z. J. Efficient Targeting of Fatty-Acid Modified Oligonucleotides to LiveCell Membranes (46) Bagheri, Y.; Chedid, S.; Shafiei, F.; Zhao, B.; You, M. A Quantitative Assessment of the Dynamic Modification of Lipid-DNA Probes on Live Cell Membranes. Chemical science 2019, 10, 11030−11040. (47) Zhao, B.; Tian, Q.; Bagheri, Y.; You, M. Lipid-Oligonucleotide Conjugates for Simple and Efficient Cell Membrane Engineering and Bioanalysis. Current opinion in biomedical engineering 2020, 13, 76. (48) McGinnis, C. S.; Patterson, D. M.; Winkler, J.; Conrad, D. N.; Hein, M. Y.; Srivastava, V.; Hu, J. L.; Murrow, L. M.; Weissman, J. S.; Werb, Z.; Chow, E. D.; Gartner, Z. J. Multi-Seq: Sample Multiplexing for Single-Cell Rna Sequencing Using Lipid-Tagged Indices. Nat. Methods 2019, 16, 619−626. (49) Audiffred, J. F.; De Leo, S. E.; Brown, P. K.; Hale-Donze, H.; Monroe, W. T. Characterization and Applications of Serum-Free Induced Adhesion in Jurkat Suspension Cells. Biotechnol. Bioeng. 2010, 106, 784−793. (50) Platnich, C. M.; Hariri, A. A.; Rahbani, J. F.; Gordon, J. B.; Sleiman, H. F.; Cosa, G. Kinetics of Strand Displacement and Hybridization on Wireframe DNA Nanostructures: Dissecting the Roles of Size, Morphology, and Rigidity. ACS Nano 2018, 12, 12836−12846. (51) Tidd, D. M.; Warenius, H. M. Partial Protection of Oncogene, Anti-Sense Oligodeoxynucleotides against Serum Nuclease Degradation Using Terminal Methylphosphonate Groups. Br. J. Cancer 1989, 60, 343−350. (52) von Kockritz-Blickwede, M.; Chow, O. A.; Nizet, V. Fetal Calf Serum Contains Heat-Stable Nucleases That Degrade Neutrophil Extracellular Traps. Blood 2009, 114, 5245−5246. (53) Möhrle, B. P.; Köhler, K.; Jaehrling, J.; Brock, R.; Gauglitz, G. Label-Free Characterization of Cell Adhesion Using Reflectometric Interference Spectroscopy (Rifs). Anal. Bioanal. Chem. 2005, 384, 407−413. (54) Salazar-Fontana, L. I.; Barr, V.; Samelson, L. E.; Bierer, B. E. Cd28 Engagement Promotes Actin Polymerization through the Activation of the Small Rho Gtpase Cdc42 in Human T Cells. Journal of immunology 2003, 171, 2225−2232. (55) Lamerton, R. E.; Lightfoot, A.; Nieves, D. J.; Owen, D. M. The Role of Protein and Lipid Clustering in Lymphocyte Activation. Frontiers in Immunology 2021, 12, 600961 DOI: 10.3389/fimmu.2021.600961. (56) Humenik, M.; Winkler, A.; Scheibel, T. Patterning of Protein-Based Materials. Biopolymers 2021, 112, No. e23412. (57) Mertgen, A.-S.; Trossmann, V. T.; Guex, A. G.; Maniura-Weber, K.; Scheibel, T.; Rottmar, M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 21342−21367. (58) Park, S.-B.; Lih, E.; Park, K.-S.; Joung, Y. K.; Han, D. K. Biopolymer-Based Functional Composites for Medical Applications. Prog. Polym. Sci. 2017, 68, 77−105. (59) Schacht, K.; Scheibel, T. Controlled Hydrogel Formation of a Recombinant Spider Silk Protein. Biomacromolecules 2011, 12, 2488−2495. (60) Kumari, S.; Lang, G.; DeSimone, E.; Spengler, C.; Trossmann, V. T.; Lücker, S.; Hudel, M.; Jacobs, K.; Krämer, N.; Scheibel, T. Engineered Spider Silk-Based 2d and 3d Materials Prevent Microbial Infestation. Mater. Today 2020, 41, 21−33. (61) Lechner, A.; Trossmann, V. T.; Scheibel, T. Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability. Macromol. Biosci. 2022, 22, 2100390. (62) Wohlrab, S.; Müller, S.; Schmidt, A.; Neubauer, S.; Kessler, H.; Leal-Egaña, A.; Scheibel, T. Cell Adhesion and Proliferation on Rgd-Modified Recombinant Spider Silk Proteins. Biomaterials 2012, 33, 6650−6659. (63) Soldevilla, M. M.; Villanueva, H.; Pastor, F. Aptamers as a Promising Therapeutic Tool for Cancer Immunotherapy. In Immunotherapy - Myths, Reality, Ideas, Future; Metodiev, K., Ed.; IntechOpen: London, 2017; pp 129−150. (64) Mercier, M.-C.; Dontenwill, M.; Choulier, L. Selection of Nucleic Acid Aptamers Targeting Tumor Cell-Surface Protein Biomarkers. Cancers 2017, 9, 69. (65) Huemmerich, D.; Helsen, C. W.; Quedzuweit, S.; Oschmann, J.; Rudolph, R.; Scheibel, T. Primary Structure Elements of Spider Dragline Silks and Their Contribution to Protein Solubility. Biochemistry 2004, 43, 13604−13612. (66) Borkner, C. B.; Lentz, S.; Müller, M.; Fery, A.; Scheibel, T. Ultra-Thin Spider Silk Films: Insights into Spider Silk Assembly on Surfaces. ACS Applied Polymer Materials 2019, 1, 3366−3374. (67) Miranda, A.; Martínez, L.; De Beule, P. A. A. Facile Synthesis of an Aminopropylsilane Layer on Si/Sio2 Substrates Using Ethanol as Aptes Solvent. MethodsX 2020, 7, 100931. (68) Chen, Q.; Yu, S.; Zhang, D.; Zhang, W.; Zhang, H.; Zou, J.; Mao, Z.; Yuan, Y.; Gao, C.; Liu, R. Impact of Antifouling Peg Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. J. Am. Chem. Soc. 2019, 141, 16772−16780. (69) Cossarizza, A.; Chang, H.-D.; Radbruch, A.; Akdis, M.; Andrä, I.; Annunziato, F.; Bacher, P.; Barnaba, V.; Battistini, L.; Bauer, W. M.; Baumgart, S.; Becher, B.; Beisker, W.; Berek, C.; Blanco, A.; Borsellino, G.; Boulais, P. E.; Brinkman, R. R.; Büscher, M.; Busch, D. H.; et al. Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies*. Eur. J. Immunol. 2017, 47, 1584−1797.
utb.fulltext.sponsorship This work was financially supported by the Bavarian-Czech Academic Agency (Bayerisch-Tschechische Hochschulagentur) BTHA grant no. JC-2019-21 and by the Ministry of Education, Youth and Sports of the Czech Republic, BTHA/BAYHOST project LTAB19019 and project OP RDE Junior Grant of Tomas Bata University in Zlín, reg. no. CZ.02.2.69/0.0/0.0/19_073/0016941. The authors thank Prof. Thomas Scheibel, Chair of the Department of Biomaterials, University Bayreuth, for providing the facility to conduct this research.
utb.wos.affiliation [Heinritz, Christina; Lamberger, Zan; Humenik, Martin] Univ Bayreuth, Fac Engn Sci, Dept Biomat, D-95447 Bayreuth, Germany; [Lamberger, Zan] Univ Wurzburg, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, Germany; [Kocourkova, Karolina; Minarik, Antonin] Tomas Bata Univ Zlin, Dept Phys & Mat Engn, Zlin 76001, Czech Republic; [Minarik, Antonin] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, Bayreuth, 95447, Germany; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, Zlín, 76001, Czech Republic; Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, 76001, Czech Republic
utb.fulltext.projects JC-2019-21
utb.fulltext.projects LTAB19019
utb.fulltext.projects CZ.02.2.69/0.0/0.0/19_073/0016941
utb.fulltext.faculty Faculty of Technology
utb.fulltext.faculty University Institute
utb.fulltext.ou Department of Physics and Materials Engineering
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam