Publikace UTB
Repozitář publikační činnosti UTB

Electrospun polyurethane nanofibers coated with polyaniline/polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Electrospun polyurethane nanofibers coated with polyaniline/polyvinyl alcohol as ultrafiltration membranes for the removal of ethinylestradiol hormone micropollutant from aqueous phase en
dc.contributor.author Yasir, Muhammad
dc.contributor.author Asabuwa Ngwabebhoh, Fahanwi
dc.contributor.author Šopík, Tomáš
dc.contributor.author Ali, Hassan
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Journal of Environmental Chemical Engineering
dc.identifier.issn 2213-2929 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 2213-3437 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 10
utb.relation.issue 3
dc.type article
dc.language.iso en
dc.publisher Elsevier Ltd
dc.identifier.doi 10.1016/j.jece.2022.107811
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S2213343722006844
dc.subject hormone removal en
dc.subject electrospun nanofibers en
dc.subject in situ coating en
dc.subject adsorption en
dc.subject water remediation en
dc.description.abstract Estrogenic hormones at significant levels are a serious cause of fish femininity, breast and ovarian cancer as a consequence of hormonal imbalance. This study reports the fabrication of electrospun polyurethane (PU) nanofibers modified by coating with polyaniline/polyvinyl alcohol (PANI/PVA) to form filtration membranes for the enhanced removal of ethinylestradiol (EE2) estrogenic hormone. Structural and morphological character-ization was performed by FTIR, SEM and optical microscopy, while the detection and quantification of EE2 were analysed using HPLC. To understand the material characteristics, the feasibility of the results based on contact time and kinetics to determine the adsorption capacity coated PU nanofibers was further investigated. Findings demonstrated that EE2 best fitted pseudo-second-order kinetics. Furthermore, the adsorption process was opti-mised via response surface methodology using a central composite design model by varying parameters such as pH, temperature, the concentration of adsorbate, and adsorbent dosage to determine. It was found that the modified PU membranes had a maximum adsorption capacity of 2.11 mg/g and high removal percentage effi-ciency of ~82.20% for EE2. Adsorption mechanism and thermodynamics were also evaluated, and the results depicted the adsorption process of EE2 occurred via intraparticle diffusion and was exothermic in nature. Finally, a reusability study was done over six adsorption-desorption cycles to test the consistent effectiveness of the modified PU membrane, which remained above 80% removal capacity. Overall, the findings indicate that treated PU with stabilized PANI particles possess the potential to form an effective adsorbent for eradicating EE2 and other estrogenic hormones from the environment. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1010989
utb.identifier.obdid 43883911
utb.identifier.scopus 2-s2.0-85130217331
utb.identifier.wok 000796244400001
utb.source j-scopus
dc.date.accessioned 2022-06-10T07:48:32Z
dc.date.available 2022-06-10T07:48:32Z
dc.description.sponsorship IGA/CPS/2022/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2022/002, RP/CPS/2022/005
dc.description.sponsorship Ministry of Education, Youth and Sports of Czech Republic [IGA/CPS/2022/003, DKRVO RP/CPS/2022/002]; Internal Grant Agency of TBU in Zlin [RP/CPS/2022/005]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yasir, Muhammad
utb.contributor.internalauthor Asabuwa Ngwabebhoh, Fahanwi
utb.contributor.internalauthor Šopík, Tomáš
utb.contributor.internalauthor Ali, Hassan
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Muhammad Yasir *, Fahanwi Asabuwa Ngwabebhoh , Tomáš Šopík , Hassan Ali , Vladimír Sedlařík * Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic * Corresponding authors. E-mail addresses: yasir@utb.cz (M. Yasir), sedlarik@utb.cz (V. Sedlařík).
utb.fulltext.dates Received 31 January 2022 Received in revised form 19 April 2022 Accepted 25 April 2022 Available online 28 April 2022
utb.fulltext.references [1] D.V. Henley, J. Lindzey, K.S. Korach, Steroid hormones, in: S. Melmed, P.M. Conn (Eds.), Endocrinology, Humana Press, Totowa, NJ, 2005, pp. 49–65, https://doi.org/10.1007/978-1-59259-829-8_4. [2] S.M. Choi, S.D. Yoo, B.M. Lee, Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity, J. Toxicol. Environ. Health Part B (2004), https://doi.org/10.1080/716100635. [3] M.E. Street, S. Angelini, S. Bernasconi, E. Burgio, A. Cassio, C. Catellani, F. Cirillo, A. Deodati, E. Fabbrizi, V. Fanos, G. Gargano, E. Grossi, L. Iughetti, P. Lazzeroni, A. Mantovani, L. Migliore, P. Palanza, G. Panzica, A.M. Papini, S. Parmigiani, B. Predieri, C. Sartori, G. Tridenti, S. Amarri, Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: highlights from a national italian meeting, Int. J. Mol. Sci. (2018), https://doi.org/10.3390/ijms19061647. [4] M.A. La Merrill, L.N. Vandenberg, M.T. Smith, W. Goodson, P. Browne, H. B. Patisaul, K.Z. Guyton, A. Kortenkamp, V.J. Cogliano, T.J. Woodruff, L. Rieswijk, H. Sone, K.S. Korach, A.C. Gore, L. Zeise, R.T. Zoeller, Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification, Nat. Rev. Endocrinol. 16 (2020) 45–57, https://doi.org/10.1038/s41574-019-0273-8. [5] R. Lauretta, A. Sansone, M. Sansone, F. Romanelli, M. Appetecchia, Endocrine disrupting chemicals: effects on endocrine glands, Front. Endocrinol. 10 (2019). [6] T.T. Schug, A.F. Johnson, L.S. Birnbaum, T. Colborn, L.J. Guillette, D.P. Crews, T. Collins, A.M. Soto, F.S. vom Saal, J.A. McLachlan, C. Sonnenschein, J.J. Heindel, Minireview: endocrine disruptors: past lessons and future directions, Mol. Endocrinol. 30 (2016) 833–847, https://doi.org/10.1210/me.2016-1096. [7] C.L.S. Vilela, J.P. Bassin, R.S. Peixoto, Water contamination by endocrine disruptors: impacts, microbiological aspects and trends for environmental protection, Environ. Pollut. (2018), https://doi.org/10.1016/j.envpol.2017.12.098. [8] Directive (EU) 2020/2184 on the quality of water intended for human consumption (recast), 2021. [9] M.R. Mills, K. Arias-Salazar, A. Baynes, L.Q. Shen, J. Churchley, N. Beresford, C. Gayathri, R.R. Gil, R. Kanda, S. Jobling, T.J. Collins, Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment, Sci. Rep. (2015), https://doi.org/10.1038/srep10511. [10] C.L.S. Vilela, H.D.M. Villela, G.A.S. Duarte, E.P. Santoro, C.T.C.C. Rachid, R. S. Peixoto, Estrogen induces shift in abundances of specific groups of the coral microbiome, Sci. Rep. 11 (2021) 2767, https://doi.org/10.1038/s41598-021-82387-x. [11] X. Gao, S. Kang, R. Xiong, M. Chen, Environment-friendly removal methods for endocrine disrupting chemicals, Sustainability 12 (2020) 7615, https://doi.org/10.3390/su12187615. [12] Z. Křesinová, L. Linhartová, A. Filipová, M. Ezechiáš, P. Mašín, T. Cajthaml, Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor, New Biotechnol. 43 (2018) 53–61, https://doi.org/10.1016/j.nbt.2017.05.004. [13] R.M. Castellanos, J.P. Bassin, D.M. Bila, M. Dezotti, Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate, Environ. Pollut. 274 (2021), 116551, https://doi.org/10.1016/j.envpol.2021.116551. [14] X. Wei, J. Li, Z. Liu, X. Yang, S. Naraginti, X. Xu, X. Wang, Visible light photocatalytic mineralization of 17α-ethinyl estradiol (EE2) and hydrogen evolution over silver and strontium modified TiO 2 nanoparticles: mechanisms and phytotoxicity assessment, RSC Adv. 8 (2018) 4329–4339, https://doi.org/10.1039/C7RA12638G. [15] R.V. Carvalho, B.G. Isecke, E. Carvalho, F.J.C. Teran, Photocatalytic oxidation of 17 -Ethinylestradiol by UV-activated TiO2 in batch and continuous-flow reactor, J. Chem. Eng. Mater. Sci. (2017), https://doi.org/10.5897/jcems2017.0293. [16] A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem. 97 (2021) 111–128, https://doi.org/10.1016/j.jiec.2021.02.017. [17] M. Naz, A. Rafiq, M. Ikram, A. Haider, S.O.A. Ahmad, J. Haider, S. Naz, Elimination of dyes by catalytic reduction in the absence of light: a review, J. Mater. Sci. 56 (2021) 15572–15608, https://doi.org/10.1007/s10853-021-06279-1. [18] M. Yasir, M. Masar, T. Sopik, H. Ali, M. Urbanek, J. Antos, M. Machovsky, I. Kuritka, ZnO nanowires and nanorods based ZnO/WO3/Pt heterojunction for efficient photocatalytic degradation of Estriol (E3) hormone, Mater. Lett. (2022), 132291, https://doi.org/10.1016/j.matlet.2022.132291. [19] T.A. Saleh, Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes, Chem. Eng. J. 404 (2021), 126987, https://doi.org/10.1016/j.cej.2020.126987. [20] T.A. Saleh, Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies, Environ. Technol. Innov. 24 (2021), 101821, https://doi.org/10.1016/j.eti.2021.101821. [21] K.J. Choi, S.G. Kim, C.W. Kim, S.H. Kim, Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere (2005), https://doi.org/10.1016/j.chemosphere.2004.11.080. [22] E. Kim, C. Jung, J. Han, N. Her, C. Min Park, A. Son, Y. Yoon, Adsorption of selected micropollutants on powdered activated carbon and biochar in the presence of kaolinite, Desalin. Water Treat. (2016), https://doi.org/10.1080/19443994.2016.1175972. [23] A.O. Ifelebuegu, Removal of steriod hormones by activated carbon adsorption—kinetic and thermodynamic studies, J. Environ. Prot. (2012), https://doi.org/10.4236/jep.2012.36057. [24] S.O. Badmus, T.A. Oyehan, T.A. Saleh, Enhanced efficiency of polyamide membranes by incorporating cyclodextrin-graphene oxide for water purification, J. Mol. Liq. 340 (2021), 116991, https://doi.org/10.1016/j.molliq.2021.116991. [25] A.Q. Al-Gamal, T.A. Saleh, F.I. Alghunaimi, Nanofiltration membrane with high flux and oil rejection using graphene oxide/ β-cyclodextrin for produced water reuse, Mater. Today Commun. 31 (2022), 103438, https://doi.org/10.1016/j.mtcomm.2022.103438. [26] A.Q. Al-Gamal, W.S. Falath, T.A. Saleh, Enhanced efficiency of polyamide membranes by incorporating TiO2-Graphene oxide for water purification, J. Mol. Liq. 323 (2021), https://doi.org/10.1016/j.molliq.2020.114922. [27] M.S. Islam, B.C. Ang, A. Andriyana, A.M. Afifi, A review on fabrication of nanofibers via electrospinning and their applications, SN Appl. Sci. 1 (2019) 1248, https://doi.org/10.1007/s42452-019-1288-4. [28] I. Tlili, T.A. Alkanhal, Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment, J. Water Reuse Desalin. (2019), https://doi.org/10.2166/wrd.2019.057. [29] T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innov. 20 (2020), 101067, https://doi.org/10.1016/j.eti.2020.101067. [30] F.A. AlAbduljabbar, S. Haider, F.A.A. Ali, A.A. Alghyamah, W.A. Almasry, R. Patel, I.M. Mujtaba, Efficient photocatalytic degradation of organic pollutant in wastewater by electrospun functionally modified polyacrylonitrile nanofibers membrane anchoring TiO2 nanostructured, Membranes 11 (2021) 785, https://doi.org/10.3390/membranes11100785. [31] A.S.M. Ali, M.R. El-Aassar, F.S. Hashem, N.A. Moussa, Surface modified of cellulose acetate electrospun nanofibers by polyaniline/β-cyclodextrin composite for removal of cationic dye from aqueous medium, Fibers Polym. 20 (2019) 2057–2069, https://doi.org/10.1007/s12221-019-9162-y. [32] S. Yan, Y. Yu, R. Ma, J. Fang, The formation of ultrafine polyamide 6 nanofiber membranes with needleless electrospinning for air filtration, Polym. Adv. Technol. 30 (2019) 1635–1643, https://doi.org/10.1002/pat.4594. [33] F.S. Victor, V. Kugarajah, M. Bangaru, S. Ranjan, S. Dharmalingam, Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination, Environ. Sci. Pollut. Res. 28 (2021) 37520–37533, https://doi.org/10.1007/s11356-021-13202-3. [34] M.H. Mohraz, F. Golbabaei, I.J. Yu, M.A. Mansournia, A.S. Zadeh, S.F. Dehghan, Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications, Int. J. Environ. Sci. Technol. 16 (2019) 681–694, https://doi.org/10.1007/s13762-018-1649-3. [35] R. Sarika, D.R. Shankaran, Synthesis and characterization of curcumin nanoparticles loaded nanofibers for lead ion detection, Sens. Lett. (2016), https://doi.org/10.1166/sl.2016.3707. [36] S. Patel, M. Konar, H. Sahoo, G. Hota, Surface functionalization of electrospun PAN nanofibers with ZnO-Ag heterostructure nanoparticles: synthesis and antibacterial study, Nanotechnology (2019), https://doi.org/10.1088/1361-6528/ab045d. [37] M.M. Foumani, A. Khorshidi, A.F. Shojaei, Polyethyleneimine nanofibers functionalized with tetradentate Schiff base complexes of dioxomolybdenum(VI) as efficient catalysts for epoxidation of alkenes, ChemistrySelect (2019), https://doi.org/10.1002/slct.201803047. [38] B. Balusamy, A. Senthamizhan, T. Uyar, Functionalized electrospun nanofibers as a versatile platform for colorimetric detection of heavy metal ions in water: a review, Materials (2020), https://doi.org/10.3390/ma13102421. [39] R. Araga, C.S. Sharma, Amine functionalized electrospun cellulose nanofibers for fluoride adsorption from drinking water, J. Polym. Environ. (2019), https://doi.org/10.1007/s10924-019-01394-2. [40] L. Qian, X. Li, F. Qi, J. Li, L. Lu, Q. Xu, An amino-functionalized grooved nanofiber mat for solid-phase extraction of phenolic pollutants, Microchim. Acta (2017), https://doi.org/10.1007/s00604-017-2313-1. [41] J. Stejskal, P. Bober, M. Trchová, A. Kovalcik, J. Hodan, J. Hromádková, J. Prokeš, Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting, Macromolecules (2017), https://doi.org/10.1021/acs.macromol.6b02526. [42] Z. Zhang, Z. Wei, M. Wan, Nanostructures of polyaniline doped with inorganic acids, Macromolecules (2002), https://doi.org/10.1021/ma020199v. [43] J. Stejskal, Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition, Chem. Pap. (2020), https://doi.org/10.1007/s11696-019-00982-9. [44] M. Ayad, G. El-Hefnawy, S. Zaghlol, Facile synthesis of polyaniline nanoparticles; its adsorption behavior, Chem. Eng. J. (2013), https://doi.org/10.1016/j.cej.2012.11.099. [45] J. Stejskal, Conducting polymers are not just conducting: a perspective for emerging technology, Polym. Int. (2020), https://doi.org/10.1002/pi.5947. [46] M. Yasir, T. Šopík, L. Lovecká, D. Kimmer, V. Sedlařík, The adsorption, kinetics, and interaction mechanisms of various types of estrogen on electrospun polymeric nanofiber membranes, Nanotechnology 33 (2021) 75702, https://doi.org/10.1088/1361-6528/ac357b. [47] S. Zaghlol, W.A. Amer, M.H. Shaaban, M.M. Ayad, P. Bober, J. Stejskal, Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media, Chem. Pap. 74 (2020) 3183–3193, https://doi.org/10.1007/s11696-020-01151-z. [48] P. Humpolicek, V. Kasparkova, P. Saha, J. Stejskal, Biocompatibility of polyaniline, Synth. Met. (2012), https://doi.org/10.1016/j.synthmet.2012.02.024. [49] A.M. Khalil, A.I. Schäfer, Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water, J. Memb. Sci. 618 (2021), 118228, https://doi.org/10.1016/j.memsci.2020.118228. [50] T. Huang, S. wen Zhang, J. Xie, L. Zhou, L. fei Liu, Effective adsorption of quadrivalent cerium by synthesized laurylsulfonate green rust in a central composite design, J. Environ. Sci. (2021), https://doi.org/10.1016/j.jes.2021.01.028. [51] F.A. Ngwabebhoh, A. Erdem, U. Yildiz, Synergistic removal of Cu(II) and nitrazine yellow dye using an eco-friendly chitosan-montmorillonite hydrogel: Optimization by response surface methodology, J. Appl. Polym. Sci. 133 (2016) 1–14, https://doi.org/10.1002/app.43664. [52] J. Wang, H. Chi, A. Zhou, R. Zheng, H. Bai, T. Zhang, Facile synthesis of multifunctional elastic polyaniline/polyvinyl alcohol composite gels by a solution assembly method, RSC Adv. (2020), https://doi.org/10.1039/d0ra02238a. [53] A. Erdem, F.A. Ngwabebhoh, S. Çetintas¸, D. Bingöl, U. Yildiz, Fabrication and characterization of novel macroporous Jeffamine/diamino hexane cryogels for enhanced Cu(II) metal uptake: optimization, isotherms, kinetics and thermodynamic studies, Chem. Eng. Res. Des. (2017), https://doi.org/10.1016/j.cherd.2016.10.010. [54] T.A. Saleh, Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes, Environ. Sci. Pollut. Res. 22 (2015) 16721–16731, https://doi.org/10.1007/s11356-015-4866-z. [55] T.A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO 3 or a mixture of HNO 3 /H 2 SO 4, Appl. Surf. Sci. 257 (2011) 7746–7751, https://doi.org/10.1016/j.apsusc.2011.04.020. [56] T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Clean. Prod. 172 (2018) 2123–2132, https://doi.org/10.1016/j.jclepro.2017.11.208. [57] A. Bahadur, M. Shoaib, A. Saeed, S. Iqbal, FT-IR spectroscopic and thermal study of waterborne polyurethane-acrylate leather coatings using tartaric acid as an ionomer, E Polym. (2016), https://doi.org/10.1515/epoly-2016-0154. [58] M. Shahi, A. Moghimi, B. Naderizadeh, B. Maddah, Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers, Sci. Iran. (2011), https://doi.org/10.1016/j.scient.2011.08.013. [59] H. Huang, J. Yao, L. Li, F. Zhu, Z. Liu, X. Zeng, X. Yu, Z. Huang, Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors, J. Mater. Sci. (2016), https://doi.org/10.1007/s10853-016-0137-8. [60] O.F.S. Khasawneh, P. Palaniandy, P. Palaniandy, M. Ahmadipour, H. Mohammadi, M.R. Bin Hamdan, Removal of acetaminophen using Fe2O3-TiO2nanocomposites by photocatalysis under simulated solar irradiation: optimization study, J. Environ. Chem. Eng. (2021), https://doi.org/10.1016/j.jece.2020.104921. [61] M. Galedari, M. Mehdipour Ghazi, S. Rashid Mirmasoomi, Photocatalytic process for the tetracycline removal under visible light: presenting a degradation model and optimization using response surface methodology (RSM), Chem. Eng. Res. Des. (2019), https://doi.org/10.1016/j.cherd.2019.03.031. [62] D. Lambropoulou, E. Evgenidou, V. Saliverou, C. Kosma, I. Konstantinou, Degradation of venlafaxine using TiO2/UV process: Kinetic studies, RSM optimization, identification of transformation products and toxicity evaluation, J. Hazard. Mater. (2017), https://doi.org/10.1016/j.jhazmat.2016.04.074. [63] F. Esmaeeli, S.A. Gorbanian, N. Moazezi, Removal of estradiol valerate and progesterone using powdered and granular activated carbon from aqueous solutions, Int. J. Environ. Res. 11 (2017) 695–705, https://doi.org/10.1007/s41742-017-0060-0. [64] L.A. Al-Khateeb, A.Y. Obaid, N.A. Asiri, M. Abdel Salam, Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: Kinetic and thermodynamic studies, J. Ind. Eng. Chem. 20 (2014) 916–924, https://doi.org/10.1016/j.jiec.2013.06.023. [65] F.F. Qi, Y. Cao, M. Wang, F. Rong, Q. Xu, Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies, Nanoscale Res. Lett. 9 (2014) 1–10, https://doi.org/10.1186/1556-276X-9-353. [66] L. Kovalova, D.R.U. Knappe, K. Lehnberg, C. Kazner, J. Hollender, Removal of highly polar micropollutants from wastewater by powdered activated carbon, Environ. Sci. Pollut. Res. (2013), https://doi.org/10.1007/s11356-012-1432-9. [67] S.A. Abdel-Gawad, H.M. Abdel-Aziz, Removal of ethinylestradiol by adsorption process from aqueous solutions using entrapped activated carbon in alginate biopolymer: isotherm and statistical studies, Appl. Water Sci. 9 (2019) 1–8, https://doi.org/10.1007/s13201-019-0951-7. [68] L.D. Nghiem, A.I. Schäfer, Adsorption and transport of trace contaminant estrone in NF/RO membranes, Environ. Eng. Sci. 19 (2002) 441–451, https://doi.org/10.1089/109287502320963427. [69] A.I. Schäfer, I. Akanyeti, A.J.C. Semião, Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens, Adv. Colloid Interface Sci. 164 (2011) 100–117, https://doi.org/10.1016/j.cis.2010.09.006. [70] M. Yasir, T. Sopik, R. Patwa, D. Kimmer, V. Sedlarik, Adsorption of estrogenic hormones in aqueous solution using electrospun nanofibers from waste cigarette butts: Kinetics, mechanism, and reusability, Express Polym. Lett. 16 (2022) 624–648. [71] A.I. Schäfer, K. Stelzl, M. Faghih, S. Sen Gupta, K.R. Krishnadas, S. Heißler, T. Pradeep, Poly(ether sulfone) nanofibers impregnated with β-cyclodextrin for increased micropollutant removal from water, ACS Sustain. Chem. Eng. 6 (2018) 2942–2953, https://doi.org/10.1021/acssuschemeng.7b02214. [72] N. Sebeia, M. Jabli, A. Ghith, T.A. Saleh, Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye, Arab. J. Chem. 13 (2020) 4263–4274, https://doi.org/10.1016/j.arabjc.2019.07.007. [73] E. Vazquez-Velez, L. Lopez-Zarate, H. Martinez-Valencia, Electrospinning of polyacrylonitrile nanofibers embedded with zerovalent iron and cerium oxide nanoparticles, as Cr(VI) adsorbents for water treatment, J. Appl. Polym. Sci. 137 (2020) 1–10, https://doi.org/10.1002/app.48663. [74] F.A. Ngwabebhoh, N. Mammadli, U. Yildiz, Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: optimization, kinetics, thermodynamics and reusability study, J. Environ. Chem. Eng. 7 (2019), 103281, https://doi.org/10.1016/j.jece.2019.103281. [75] M. Carballa, G. Fink, F. Omil, J.M. Lema, T. Ternes, Determination of the solidwater distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge, Water Res. 42 (2008) 287–295, https://doi.org/10.1016/j.watres.2007.07.012. [76] Y.X. Ren, K. Nakano, M. Nomura, N. Chiba, O. Nishimura, A thermodynamic analysis on adsorption of estrogens in activated sludge process, Water Res (2007), https://doi.org/10.1016/j.watres.2007.01.058. [77] W. Wang, J. Hu, R. Zhang, C. Yan, L. Cui, J. Zhu, A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes, Cellulose 28 (2021) 897–909, https://doi.org/10.1007/s10570-020-03561-4. [78] J. Han, W. Qiu, Z. Cao, J. Hu, W. Gao, Adsorption of ethinylestradiol (EE2) on polyamide 612: Molecular modeling and effects of water chemistry, Water Res. 47 (2013) 2273–2284, https://doi.org/10.1016/j.watres.2013.01.046. [79] J. He, Q. Zhou, J. Guo, F. Fang, Characterization of potassium hydroxide modified anthracite particles and enhanced removal of 17α-ethinylestradiol and bisphenol A, Environ. Sci. Pollut. Res. 25 (2018) 22224–22235, https://doi.org/10.1007/s11356-018-2287-5.
utb.fulltext.sponsorship The authors gratefully acknowledge the financial support from the Ministry of Education, Youth and Sports of Czech Republic (DKRVO RP/CPS/2022/002 and RP/CPS/2022/005), the Internal Grant Agency of TBU in Zlin (grant no. IGA/CPS/2022/003). We would also like to acknowledge the Centre of Polymer Systems (CPS) situated at Tomas Bata University in Zlin, Czech Republic, to use the available research facilities to conduct this research work.
utb.wos.affiliation [Yasir, Muhammad; Ngwabebhoh, Fahanwi Asabuwa; Sopik, Tomas; Ali, Hassan; Sedlarik, Vladimir] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomas Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre Of Polymer Systems, University Institute, Tomas Bata University In Zlín, Trída Tomáše Bati 5678, Zlín, 76001, Czech Republic
utb.fulltext.projects RP/CPS/2022/002
utb.fulltext.projects RP/CPS/2022/005
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam