TBU Publications
Repository of TBU Publications

Electrochemically induced charge injection in disordered organic conductive polymers

DSpace Repository

Show simple item record

dc.title Electrochemically induced charge injection in disordered organic conductive polymers en
dc.contributor.author Schauer, František
dc.contributor.author Nádaždy, Vojtech
dc.contributor.author Gmucová, Katarína
dc.contributor.author Váry, Tomáš
dc.relation.ispartof Journal of Applied Physics
dc.identifier.issn 0021-8979 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 124
utb.relation.issue 16
dc.type article
dc.language.iso en
dc.publisher American Institute of Physics (AIP)
dc.identifier.doi 10.1063/1.5049133
dc.relation.uri https://aip.scitation.org/doi/10.1063/1.5049133
dc.description.abstract This paper deals with the electrochemically induced charge injection in the conductive polymer (CP), exemplified by well examined archetypal CP-poly(3-hexylthiophene-2,5-diyl). The polar solvent of acetonitrile with salt tetrabutylammonium hexafluorophosphate was used to transport electrons in the electrolyte. The decisive mechanism is the recombination current at the electrolyte/CP interface taking place at the Fermi energy of CP, whose energy position is determined by the externally applied voltage. The corresponding mechanism of the charge carrier transport in the polymer bulk is the space-charge limited current (SCLC) by holes or electrons (or more precisely positive and negative polarons) at the respective transport paths of HOMO and LUMO bands. The charge transport mechanisms and the occupation statistics are the basis of the energy-resolved electrochemical impedance spectroscopy for the mapping of the density of electronic states of conductive organic semiconductors [F. Schauer, V. Nadazdy, and K. Gmucova, J. Appl. Phys. 123, 161590 (2018)]. From the application point of view, the major message of the paper is that it is possible to pass high current densities of the order of 0.1 A cm(-2) via electrochemical systems with the CP, induced by means of doping processes of both CP surface and its bulk, leading to the charge injection and SCLC in CP. Published by AIP Publishing. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008289
utb.identifier.obdid 43879278
utb.identifier.scopus 2-s2.0-85055436520
utb.identifier.wok 000448975000074
utb.identifier.coden JAPIA
utb.source j-wok
dc.date.accessioned 2019-01-03T12:31:41Z
dc.date.available 2019-01-03T12:31:41Z
dc.description.sponsorship Slovak Research and Development Agency [APVV-14-0891, APVV-0096-11]; Scientific Grant Agency VEGA [1/0501/15, 2/0163/17, 2/0081/18]; project Efficient controlling of the production and consumption of energy from renewable sources, ITMS [26240220028]; Research and Development Operational Programme - ERDF
utb.contributor.internalauthor Schauer, František
utb.fulltext.affiliation F. Schauer,1 V. Nádaždy,2 K. Gmucová,2 and T. Váry3 1 Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 05 Zlín, Czech Republic 2 Institute of Physics of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovak Republic 3 Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovak Republic
utb.fulltext.dates Received 19 July 2018; accepted 2 October 2018; published online 22 October 2018
utb.fulltext.references 1 M. Rudolph and E. L. Ratcliff, Nat. Commun. 8, 1048 (2017). 2 T.-H. Le, Y. Kim, and H. Yoon, Polymers 9, 150 (2017). 3 X. Strakosas, M. Bongo, and R. M. Owens, J. Appl. Polym. Sci. 132, 41735 (2015). 4 M. Ramuz, A. Hama, M. Huerta, J. Rivnay, P. Leleux, and R. M. Owens, Adv. Mater. 26, 7083 (2014). 5 D. Khodagholy, T. Doublet, P. Quilichini, M. Gurfinkel, P. Leleux, A. Ghestem, E. Ismailova, T. Hervé, S. Sanaur, C. Bernard, and G. G. Malliaras, Nat. Commun. 4, 1575 (2013). 6 X. Jiang, S. Setodoi, S. Fukumoto, I. Imae, K. Komaguchi, J. Yano, H. Mizota, and Y. Harima, Carbon 67, 662 (2014). 7 Y. Zhong, X. Xia, W. Mai, J. Tu, and H. J. Fan, Adv. Mater. Technol. 2, 1700182 (2017). 8 M. A. Said, T. Soganci, M. Karakus, and M. Ak, J. Organomet. Chem. 851, 248 (2017). 9 J. Bisquert and R. A. Marcus, in Multiscale Modelling of Organic and Hybrid Photovoltaics, edited by D. Beljonne and J. Cornil (Springer, Berlin, 2014), p. 325. 10 S. Pecqueur, S. Lenfant, D. Guérin, F. Alibart, and D. Vuillaume, J. Phys. Conf. Ser. 939, 012017 (2017). 11 I. N. Hulea, H. B. Brom, A. J. Houtepen, D. Vanmaekelbergh, J. J. Kelly, and E. A. Meulenkamp, Phys. Rev. Lett. 93, 166601 (2004). 12 B. D. Paulsen and C. D. Frisbie, J. Phys. Chem. C 116, 3132 (2012). 13 S. Tang, A. Sandström, P. Lundberg, T. Lanz, C. Larsen, S. van Reenen, M. Kemerink, and L. Edman, Nat. Commun. 8, 1190 (2017). 14 C. P. Watson and D. M. Taylor, Appl. Phys. Lett. 99, 223304 (2011). 15 A. Sandström, P. Matyba, O. Inganäs, and L. Edman, J. Am. Chem. Soc. 132, 6646 (2010). 16 T. Sakanoue, J. Li, H. Tanaka, R. Ito, S. Ono, S.-i. Kuroda, and T. Takenobu, Adv. Mater. 29, 1606392 (2017). 17 J. Pu, T. Fujimoto, Y. Ohasi, S. Kimura, C.-H. Chen, L.-J. Li, T. Sakanoue, and T. Takenobu, Adv. Mater. 29, 1606918 (2017). 18 V. Nádaždy, F. Schauer, and K. Gmucová, Appl. Phys. Lett. 105, 142109 (2014). 19 H. Helmholtz, Ann. Phys. 165, 211 (1853). 20 N. S. Lewis, J. Phys. Chem. B 102, 4843 (1998). 21 J. W. Ondersma and T. W. Hamann, J. Am. Chem. Soc. 133, 8264 (2011). 22 R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985). 23 R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993). 24 Y. Q. Gao, Y. Georgievskii, and R. A. Marcus, J. Chem. Phys. 112, 3358 (2000). 25 W. Schmickler and E. Santos, in Interfacial Electrochemistry, 2nd ed. (Springer-Verlag, Berlin, 2010), p. 272. 26 A. M. Fajardo and N. S. Lewis, J. Phys. Chem. B 101, 11136 (1997). 27 K. E. Pomykal and N. S. Lewis, J. Phys. Chem. B 101, 2476 (1997). 28 F. Schauer, V. Nádaždy, and K. Gmucová, J. Appl. Phys. 123, 161590 (2018). 29 N. Vukmirovićand L.-W. Wang, J. Phys. Chem. B 115, 1792 (2011). 30 M. A. Lampert and R. B. Schilling, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Elsevier, 1970), Vol. 6, p. 96. 31S. D. Baranovskii, Phys. Status Solidi B 251, 487 (2014). 32 F. Schauer, R. Novotny, and V. Čech, Chem. Pap. 50, 206 (1996). 33 P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962). 34 J. E. B. Randles, Discuss. Faraday Soc. 1, 11 (1947). 35 E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 2005). 36 V. Nádaždy, K. Gmucová, P. Nádaždy, P. Siffalovic, K. Vegso, M. Jergel, F. Schauer, and E. Majkova, J. Phys. Chem. C 122, 5881 (2018). 37 Y. Aoyama, O. Douhéret, P. Leclère, D. Moerman, J. Mizukado, H. Suda, R. Lazzaroni, and Y. Yoshida, Org. Electron. 43, 142 (2017). 38 A. Köhler and H. Bässler, in Electronic Processes in Organic Semiconductors, edited by A. Köhler and H. Bässler (Wiley-VCH Verlag GmbH & Co. KGaA, 2015). 39 E. M. Walker and M. C. Lonergan, Appl. Phys. Lett. 108, 213301 (2016). 40 Y. Shen, A. R. Hosseini, M. H. Wong, and G. G. Malliaras, ChemPhysChem 5, 16 (2004). 41 W. R. Salaneck, S. Stafstrom, and J. L. Bredas, Conjugated Polymer Surfaces and Interfaces: Electronic and Chemical Structure of Interfaces for Polymer Light Emitting Devices (Cambridge University Press, Cambridge, 1996). 42 S. W. Feldberg and N. Sutin, Chem. Phys. 324, 216 (2006). 43 W. J. Royea, A. M. Fajardo, and N. S. Lewis, J. Phys. Chem. B 101, 11152 (1997).
utb.fulltext.sponsorship This research was supported by the Slovak Research and Development Agency, Project Nos. APVV-14-0891 and APVV-0096-11, the Scientific Grant Agency VEGA, Project Nos. 1/0501/15, 2/0163/17, and 2/0081/18, and the project Efficient controlling of the production and consumption of energy from renewable sources, ITMS code 26240220028, supported by the Research and Development Operational Programme funded by ERDF.
utb.wos.affiliation [Schauer, F.] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76005, Czech Republic; [Nadazdy, V.; Gmucova, K.] Slovak Acad Sci, Inst Phys, Dubravska Cesta 9, Bratislava 84511, Slovakia; [Vary, T.] Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, 760 05, Czech Republic; Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 11, Slovakia; Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, 812 19, Slovakia
utb.fulltext.projects APVV-14-0891
utb.fulltext.projects APVV-0096-11
utb.fulltext.projects VEGA 1/0501/15
utb.fulltext.projects VEGA 2/0163/17
utb.fulltext.projects VEGA 2/0081/18
utb.fulltext.projects ITMS 26240220028
Find Full text

Files in this item

Show simple item record