TBU Publications
Repository of TBU Publications

Characterization of ageing effect on the intrinsic strength of NR, BR and NR/BR blends

DSpace Repository

Show simple item record

dc.title Characterization of ageing effect on the intrinsic strength of NR, BR and NR/BR blends en
dc.contributor.author Stoček, Radek
dc.contributor.author Mars, Will V.
dc.contributor.author Kratina, Ondřej
dc.contributor.author Machů, Aleš
dc.contributor.author Drobilík, Michal
dc.contributor.author Kotula, Ondřej
dc.contributor.author Cmarová, Aneta
dc.relation.ispartof Constitutive Models for Rubber X - Proceedings of the 10th European Conference on Constitutive Models for Rubber, ECCMR X 2017
dc.identifier.isbn 9781138030015
dc.date.issued 2017
dc.citation.spage 371
dc.citation.epage 374
dc.event.title 10th European Conference on Constitutive Models for Rubber, ECCMR X 2017
dc.event.location Munich
utb.event.state-en Germany
utb.event.state-cs Německo
dc.event.sdate 2017-08-28
dc.event.edate 2017-08-31
dc.type conferenceObject
dc.language.iso en
dc.publisher CRC Press/Balkema
dc.identifier.doi 10.1201/9781315223278-59
dc.relation.uri https://www.taylorfrancis.com/books/e/9781351840408/chapters/10.1201%2F9781315223278-59
dc.description.abstract The intrinsic strengths for carbon black filled (50 phr) rubber materials based on Natural Rubber (NR), Butadiene Rubber (BR) and NR/BR blends in the volume ratio 50/50 have been evaluated for unaged material, and material aged at 50°C for 720 hours. The measurement was based on quasi-static tension loading on an edge-cracked pure shear specimen, combined with frictionless cutting via a sharp blade. The cutting force and pre-stress parameters were varied automatically using the Intrinsic Strength Analyzer (ISA©) instrument manufactured by Coesfeld. It was observed that both stiffness and the intrinsic cutting energy increase with aging. The cutting measurement provides a convenient approach for estimating fatigue threshold, a measurement with otherwise might require much longer testing periods. © 2017 Taylor & Francis Group, London, UK. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008262
utb.identifier.rivid RIV/70883521:28110/17:63517267!RIV18-MSM-28110___
utb.identifier.rivid RIV/70883521:28610/17:63517267!RIV18-MSM-28610___
utb.identifier.obdid 43877257
utb.identifier.scopus 2-s2.0-85047253654
utb.source d-scopus
dc.date.accessioned 2018-11-01T09:32:11Z
dc.date.available 2018-11-01T09:32:11Z
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Stoček, Radek
utb.contributor.internalauthor Kratina, Ondřej
utb.contributor.internalauthor Machů, Aleš
utb.contributor.internalauthor Drobilík, Michal
utb.contributor.internalauthor Kotula, Ondřej
utb.contributor.internalauthor Cmarová, Aneta
utb.fulltext.affiliation R. Stoček PRL Polymer Research Lab., s.r.o., Zlín, Czech Republic Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic W.V. Mars Endurica LLC, Findlay, Ohio, USA O. Kratina, A. Machů, M. Drobilík, O. Kotula & A. Cmarová Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic
utb.fulltext.dates -
utb.fulltext.references Andrews, E.H., 1963, Rupture propagation in hysteresial materials: stress at a notch, Journal of the Mechanics and Physics of Solids 11, 231–242. Bhowmick, A.K., 1988, Threshold Fracture of Elastomers, Journal of Macromolecular Science, Part C: Polymer Reviews, 28:3–4, 339–370. Baldwin, J.M.; Bauer, D.R.; Ellwood, K.R., 2007, Rubber aging in tires. Part 1: Field results, Polymer Degradation and Stability 92, 103–109 Celina, M., Wise, J., Ottesen, D.K., Gillen, K.T., Clough, R.L., 2000, Correlation of chemical and mechanical property changes during oxidative degradation of neoprene., Polym. Degrad. Stab.,68 (2), 171–184. Gent, A.N., & Mars, W.V., 2013, Strength of elastomers. Science and Technology of Rubber, 419–454. Huang, D.; LaCount, B.J.; Castro, J.M.; Ignatz-Hoover, F., 2001, Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds I. Cyclic aging, Polymer Degradation and Stability 74, 353–362. Lake, G.J., & Lindley, P.B., 1966, Mechanical fatigue limit for rubber, Rubber Chemistry and Technology 39, 348–364. Lake, G.J. & Thomas, A.G., 1967, The Strength of Highly Elastic Materials, Proc. R. Soc. Lond. A, 300, 108–119. Lake, G.J., & Yeoh, O.H., 1978, Measurement of rubber cutting resistance in the absence of friction. International Journal of Fracture, 14(5), 509–526. Lake, G.J. & Yeoh, O.H., 1987, Effect of Crack Tip Sharpness on the Strength of Vulcanized Rubbers, Journal of Polymer Science: Part B: Polymer Physics, Vol. 25, 1157–1190. Lion, A., 1999, Strain-dependent dynamic properties of filled rubber: a nonlinear viscoelastic approach based on structural variables. Rubber Chemistry and Technology 72 (2), 410–429. Mars, W.V., 2007, Fatigue life prediction for elastomeric structures. Rubber Chemistry and Technology 80, 481–503. Mars, W.V.; Kipscholl, C.; Stocek, R., 2016, Intirnsic strength analyzer based on cutting method, Presented at the Fall 190th Technical Meeting of the Rubber Division of the American Chemical Society, Inc. Pittsburgh, PA, October 10–13. Payne, A.R., 1962, The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I., J. Appl. Polymer Sci. 6, 57–63. Payne, A.R., 1965, Strainwork Dependence of Filler-loaded Vulcanizates, J. Appl. Polymer Sci. 8, 2661–2686. Schuring, D.J., Hall, G.L., 1981, Ambient Temperature Effects on Tire Rolling Loss, Rubber Chemistry and Technology, Vol. 54, No. 5, 1981, pp. 1113–1123. Stoček, R.; Heinrich, G. Gehde, M., Kipscholl, R., 2013, Analysis of Dynamic Crack Propagation in Elastomers by Simultaneous Tensile—and Pure-Shear-Mode TestingIn: W. Grellmann et al. (Eds.): Fracture Mechanics & Statistical Mech., LNACM 70, Springer-Verlag Berlin Heidelberg, pp. 269–30. Stoček, R.; Kratina, O.; Ghosh, P.; Maláč, J.; Mukhopadhyay, R., 2017, Influence of thermal ageing process on the crack propagation of rubber used for tire application. In: W. Grellmann, B. Langer: Deformation and Fracture Behaviour of Polymer Materials. Springer, Berlin, 305–316.
utb.fulltext.sponsorship This article was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund and national budget of the Czech Republic, within the framework of the project CPS—strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409) as well supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504) and by the internal grant agency of the project IGA/CPS/2017/006.
utb.scopus.affiliation PRL Polymer Research Lab., s.r.o, Zlín, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic; Endurica LLC, Findlay, OH, United States
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects LO1504
utb.fulltext.projects IGA/CPS/2017/006
Find Full text

Files in this item

Show simple item record