Publikace UTB
Repozitář publikační činnosti UTB

The use of the photovoltaic system in combination with a thermal energy storage for heating and thermoelectric cooling

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The use of the photovoltaic system in combination with a thermal energy storage for heating and thermoelectric cooling en
dc.contributor.author Skovajsa, Jan
dc.contributor.author Zálešák, Martin
dc.relation.ispartof Applied Sciences (Switzerland)
dc.identifier.issn 2076-3417 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 8
utb.relation.issue 10
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/app8101750
dc.relation.uri https://www.mdpi.com/2076-3417/8/10/1750
dc.subject PCM en
dc.subject Thermoelectric cooling en
dc.subject Renewable energy sources en
dc.subject Photovoltaic en
dc.subject Thermal energy storage en
dc.description.abstract The article is focused on the research of the usage of modern accumulation technology. The proposed system is able to improve the thermal comfort of building interiors. That text depicts the technology, which uses a photovoltaics and other renewable energy sources for active heating and cooling. The bases of the presented technology are the phase change material and thermal energy storages. So, it passively improves the thermal capacity of the constructions of the buildings. Moreover, there is a possibility to use it for active heating and cooling. The technology contains thermoelectric assemblies, so, there is a very interesting possibility to store thermal energy with use of renewable energy sources (such as photovoltaic system) and thermoelectric coolers side by side. In the manuscript, there are shown measurements and results of the active operating modes of proposed technology. It was found the technology is able to work in active heating and cooling modes. It works quite well in active heating mode. On the other hand, thermoelectric cooling mode had a problem with overheating. In the end, the problem was solved and the cooling mode works. The measurements and results are described in the text. © 2018 by the authors. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1008221
utb.identifier.obdid 43878541
utb.identifier.scopus 2-s2.0-85054064119
utb.identifier.wok 000448653700045
utb.source j-scopus
dc.date.accessioned 2018-10-18T10:31:45Z
dc.date.available 2018-10-18T10:31:45Z
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/001]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.contributor.internalauthor Skovajsa, Jan
utb.contributor.internalauthor Zálešák, Martin
utb.fulltext.affiliation Jan Skovajsa * and Martin Zalesak Faculty of Applied Informatics, Tomas Bata University in Zlin, Namesti T.G.Masaryka 5555, 760 01 Zlin, Czech Republic; zalesak@utb.cz * Correspondence: jskovajsa@utb.cz
utb.fulltext.dates Received: 11 July 2018; Accepted: 25 September 2018; Published: 28 September 2018
utb.fulltext.references 1. Zhou, D.; Zhao, C.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [http://dx.doi.org/10.1016/j.apenergy.2011.08.025] 2. Ali, H.; Abedin, M.A.R. A Critical Review of Thermochemical Energy Storage Systems. Open Renew. Energy J. 2011, 4, 42–46. 3. Tay, N.; Liu, M.; Belusko, M.; Bruno, F. Review on transportable phase change material in thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 264–277. [http://dx.doi.org/10.1016/j.rser.2016.10.069] 4. Lee, K.O.; Medina, M.A.; Sun, X. On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: Evaluation of a thin phase change material (PCM) layer. Energy Build. 2015, 86, 86–92. [http://dx.doi.org/10.1016/j.enbuild.2014.10.020] 5. Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [http://dx.doi.org/10.1016/j.pmatsci.2014.03.005] 6. Fatih Demirbas, M. Thermal Energy Storage and Phase Change Materials: An Overview. Energy Sources Part B 2006, 1, 85–95. [http://dx.doi.org/10.1080/009083190881481] 7. Socaciu, L. Thermal Energy Storage with Phase Change Material. Leonardo Electron. J. Pract. Technol. 2012, 11, 75–98. 8. Memon, S. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [http://dx.doi.org/10.1016/j.rser.2013.12.042] 9. Soares, N.; Costa, J.; Gaspar, A.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings energy efficiency. Energy Build. 2013, 59, 82–103. [http://dx.doi.org/10.1016/j.enbuild.2012.12.042] 10. Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [http://dx.doi.org/10.1016/j.enconman.2003.09.015] 11. Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [http://dx.doi.org/10.1016/j.rser.2012.01.020] 12. Phase Change Energy Storage Technology: Heat and Cold Storage with Phase Change (PCM)—An Innovation for Storing Thermal Energy and Temperature Control. Available online: https://rgees.com/ technology.php (accessed on 10 March 2017). 13. Mondal, S. Phase change materials for smart textiles—An overview. Appl. Thermal Eng. 2008, 28, 1536–1550. [http://dx.doi.org/10.1016/j.applthermaleng.2007.08.009] 14. Herrmann, U.; Kearney, D.W. Survey of Thermal Energy Storage for Parabolic Trough Power Plants. J. Sol. Energy Eng. 2002, 124, 145–152. 15. Giro-Paloma, J.; Martinez, M.; Cabeza, L.F.; Fernandez, A.I. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev. 2016, 53, 1059–1075. [http://dx.doi.org/10.1016/j.rser.2015.09.040] 16. Da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials—A review. Appl. Energy 2016, 177, 227–238. [http://dx.doi.org/10.1016/j.apenergy.2016.05.097] 17. Kosny, J. PCM-Enhanced Building Components—An Application of Phase Change Materials in Building Envelopes and Internal Structures; Springer: Berlin, Germany, 2015. 18. Castell, A.; Martorell, I.; Medrano, M.; Parez, G.; Cabeza, L. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 2010, 42, 534–540. [http://dx.doi.org/10.1016/j.enbuild.2009.10.022] 19. Grynning, S.; Goia, F.; Rognvik, E.; Time, B. Possibilities for characterization of a PCM window system using large scale measurements. Int. J. Sustain. Built Environ. 2013, 2, 56–64. [http://dx.doi.org/10.1016/j.ijsbe.2013.09.003] 20. Faninger, G. Thermal Energy Storage. Available online: https://rgees.com/technology.php (accessed on 21 August 2017). 21. Sanchez, L.; Sanchez, P.; de Lucas, A.; Carmona, M.; Rodriguez, J.F. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym. Sci. 2007, 285, 1377–1385. [http://dx.doi.org/10.1007/s00396-007-1696-7] 22. Lee, J.; Park, J. Phase Change Material (PCM) Application in a Modernized Korean Traditional House (Hanok). Sustainability 2018, 10, 948. [http://dx.doi.org/10.3390/su10040948] 23. Bland, A.; Khzouz, M.; Statheros, T.; Gkanas, E.I. PCMs for Residential Building Applications: A Short Review Focused on Disadvantages and Proposals for Future Development. Buildings 2017, 7, 78. [http://dx.doi.org/10.3390/buildings7030078] 24. Mazzeo, D.; Oliveti, G.; Arcuri, N. A Method for Thermal Dimensioning and for Energy Behavior Evaluation of a Building Envelope PCM Layer by Using the Characteristic Days. Energies 2017, 10, 659. [http://dx.doi.org/10.3390/en10050659] 25. Koster, U. DuPontTM EnergainR PCM Guidebook; DuPont: Wilmington, DE, USA, 2010. 26. Tritt, T. Thermoelectric Materials: Principles, Structure, Properties, and Applications. In Encyclopedia of Materials: Science and Technology; Elsevier: New York, NY, USA, 2002; pp. 1–11. 27. Meng, J.H.; Wang, X.D.; Zhang, X.X. Transient modeling and dynamic characteristics of thermoelectric cooler. Appl. Energy 2013, 108, 340–348. [http://dx.doi.org/10.1016/j.apenergy.2013.03.051] 28. Vian, J.; Astrain, D. Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift. Appl. Therm. Eng. 2009, 29, 1935–1940. [http://dx.doi.org/10.1016/j.applthermaleng.2008.09.018] 29. Choi, H.S.; Yun, S.; Whang, K. Development of a temperature-controlled car-seat system utilizing thermoelectric device. Appl. Therm. Eng. 2007, 27, 2841–2849. [http://dx.doi.org/10.1016/j.applthermaleng.2006.09.004] 30. Miranda, A.; Chen, T.; Hong, C. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy 2013, 59, 633–641. [http://dx.doi.org/10.1016/j.energy.2013.07.013] 31. Brown, J.S.; Domanski, P.A. Review of alternative cooling technologies. Appl. Therm. Eng. 2014, 64, 252–262. [http://dx.doi.org/10.1016/j.applthermaleng.2013.12.014] 32. Zhu, L.; Tan, H.; Yu, J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications. Energy Convers. Manag. 2013, 76, 685–690. [http://dx.doi.org/10.1016/j.enconman.2013.08.014] 33. Russel, M.; Ewing, D.; Ching, C. Characterization of a thermoelectric cooler based thermal management system under different operating conditions. Appl. Therm. Eng. 2013, 50, 652–659. [http://dx.doi.org/10.1016/j.applthermaleng.2012.05.002] 34. Xi, H.; Luo, L.; Fraisse, G. Development and applications of solar-based thermoelectric technologies. Renew. Sustain. Energy Rev. 2007, 11, 923–936. [http://dx.doi.org/10.1016/j.rser.2005.06.008] 35. Dai, Y.; Wang, R.; Ni, L. Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells. Sol. Energy Mater. Sol. Cells 2003, 77, 377–391. [http://dx.doi.org/10.1016/S0927-0248(02)00357-4] 36. He, W.; Zhou, J.; Hou, J.; Chen, C.; Ji, J. Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar. Appl. Energy 2013, 107, 89–97. [http://dx.doi.org/10.1016/j.apenergy.2013.01.055] 37. Habrovansky, T. Control and Monitoring of Heating and Cooling Units in Laboratory of Building Control Systems. Master’s Thesis, Tomas Bata University, Zlin, Czech Republic, 2008. 38. Kolacek, M.; Sehnalek, S. Heat Transfer by Forced Convection from a Vertical PCM Plate. WSEAS Trans. Heat Mass Transf. 2016, 11, 56–61. 39. Jan, S.; Martin, K.; Martin, Z. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling. Energies 2017, 10, 152. 40. Jan, S.; Martin, K.; Martin, Z. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels. In Proceedings of the 20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016), Corfu Island, Greece, 14–17 July 2016; Volume 76. 41. LairdTech. The Liquid-to-Liquid Series Thermoelectric Assembly. Available online: https://www.lairdtech.com/products/ll-210-24-00-00 (accessed on 5 February 2018). 42. Chrobak, P.; Zalesak, M.; Sehnalek, S. Verification Options of the Effectiveness for Photovoltaic Panels. Electrorevue 2014, 16, 48–53. 43. Chrobak, P.; Zalesak, M.; Oplustil, M.; Sehnalek, S.; Vincenec, J. Photovoltaics panels—Economic return based on the real effectiveness. WSEAS Trans. Environ. Dev. 2014, 10, 320–328.
utb.fulltext.sponsorship This research and APC were funded by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089 and also by the Internal Grant Agency of Tomas Bata University under the project No. IGA/CebiaTech/2018/001.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Namesti T.G.Masaryka 5555, Zlin, 760 01, Czech Republic
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2018/001
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International