TBU Publications

Repository of TBU Publications

Contact Us | Language: čeština English

- DSpace Home
- →
- Recenzovaný odborný článek
- →
- Fakulta aplikované informatiky
- →
- View Item

JavaScript is disabled for your browser. Some features of this site may not work without it.

dc.title | Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results | en |

dc.contributor.author | Pekař, Libor | |

dc.contributor.author | Gao, Qingbin | |

dc.relation.ispartof | IEEE Access | |

dc.identifier.issn | 2169-3536 Scopus Sources, Sherpa/RoMEO, JCR | |

dc.date.issued | 2018 | |

utb.relation.volume | 6 | |

dc.citation.spage | 35457 | |

dc.citation.epage | 35491 | |

dc.type | review | |

dc.language.iso | en | |

dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |

dc.identifier.doi | 10.1109/ACCESS.2018.2851453 | |

dc.relation.uri | https://ieeexplore.ieee.org/document/8401701/ | |

dc.subject | delay systems | en |

dc.subject | eigenvalues and eigenfunctions | en |

dc.subject | literature review | en |

dc.subject | stability | en |

dc.description.abstract | In recent decades, increasingly intensive research attention has been given to dynamical systems containing delays and those affected by the after-effect phenomenon. Such research covers a wide range of human activities and the solutions of related engineering problems often require interdisciplinary cooperation. The knowledge of the spectrum of these so-called time-delay systems (TDSs) is very crucial for the analysis of their dynamical properties, especially stability, periodicity, and dumping effect. A great volume of mathematical methods and techniques to analyze the spectrum of the TDSs have been developed and further applied in the most recent times. Although a broad family of nonlinear, stochastic, sampled-data, time-variant or time-varying-delay systems has been considered, the study of the most fundamental continuous linear time-invariant (LTI) TDSs with fixed delays is still the dominant research direction with ever-increasing new results and novel applications. This paper is primarily aimed at a (systematic) literature overview of recent (mostly published between 2013 to 2017) advances regarding the spectrum analysis of the LTI-TDSs. Specifically, a total of 137 collected articles-which are most closely related to the research area-are eventually reviewed. There are two main objectives of this review paper: First, to provide the reader with a detailed literature survey on the selected recent results on the topic and Second, to suggest possible future research directions to be tackled by scientists and engineers in the field. © 2013 IEEE. | en |

utb.faculty | Faculty of Applied Informatics | |

dc.identifier.uri | http://hdl.handle.net/10563/1008147 | |

utb.identifier.obdid | 43878715 | |

utb.identifier.scopus | 2-s2.0-85049303605 | |

utb.identifier.wok | 000439022000021 | |

utb.source | j-scopus | |

dc.date.accessioned | 2018-08-29T08:26:55Z | |

dc.date.available | 2018-08-29T08:26:55Z | |

dc.description.sponsorship | MSMT-7778/2014, FEDER, European Regional Development Fund; LO1303, FEDER, European Regional Development Fund; CZ.1.05/2.1.00/19.0376, FEDER, European Regional Development Fund | |

dc.description.sponsorship | European Regional Development Fund through the Project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; National Sustainability Program Project [LO1303 (MSMT-7778/2014)] | |

dc.rights | Attribution 4.0 International | |

dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |

dc.rights.access | openAccess | |

utb.contributor.internalauthor | Pekař, Libor | |

utb.fulltext.affiliation | LIBOR PEKAŘ https://orcid.org/0000-0002-2401-5886 1 AND QINGBIN GAO https://orcid.org/0000-0001-8326-1844 2 1 Faculty of Applied Informatics, Tomas Bata University in Zlín, 76005 Zlín, Czech Republic 2 Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA Corresponding author: Libor Pekař (pekar@utb.cz) LIBOR PEKAŘ was born in Zlín, Czech Republic, in 1979. He received the B.S. degree in automation and informatics, the M.S. degree in automation and control engineering in consumption industry, and the Ph.D. degree in technical cybernetics from Tomas Bata University in Zlín, in 2002, 2005, and 2013, respectively. From 2006 to 2013, he was a Junior Lecturer with the Faculty of Applied Informatics, Tomas Bata University in Zlín. From 2013 to 2018, he was a Senior Lecturer with Tomas Bata University in Zlín, where he has been an Associate Professor since 2018. He has authored two book chapters, over 40 journal articles, and over 70 conference papers. His research interests include analysis, modeling, identification, and control of time-delay systems, algebraic control methods, and autotuning and optimization techniques. He has been the Lead Guest Editor of journals Mathematical Problems in Engineering and Advances in Mechanical Engineering, and an Editor of the Mathematical Problems in Engineering since 2018. Dr. Pekař was a recipient of the Rectors’ Award for the best Ph.D. thesis in the Faculty of Applied Informatics, Tomas Bata University in Zlín, in 2013, and the Laureate of the ASR Seminary Instrumentation and Control in 2007 and 2009. QINGBIN GAO received the B.S. degree in mechanical engineering from the Harbin Institute of Technology, China, in 2011, and the Ph.D. degree in mechanical engineering from the University of Connecticut in 2015. He was an Assistant Professor with the Department of Mechanical and Aerospace Engineering, California State University, Long Beach, from 2015 to 2018. Since 2018, he has been an Assistant Professor with the Department of Mechanical Engineering, The University of Alabama. His main research focuses on the stability analysis and control synthesis of time-delay systems with applications to multi-agent systems, manufacturing, connected vehicles, human learning, and power systems and vibrations. He was a recipient of the Best Conference Paper Award of the 19th International Conference on Networking, Sensing, and Control (ICNSC) in 2017 and the 6th American Society of Mechanical Engineers (ASME) Dynamic Systems and Control Conference (DSCC) in 2013. He has served as a Session Chair for 2017 ASME DSCC, 2017 ICNSC, and 2016 IEEE American Control Conference (ACC). He has served as an Associate Editor for 2017 ACC, 2018 ACC, and 2017 ASME DSCC. He has also served as a Reviewer for over 100 papers from over 30 journals, including but not limited to Automatica, the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, and Mechatronics. He is currently a Guest Editor of the IEEE ACCESS and Advances in Mechanical Engineering. | |

utb.fulltext.dates | Received May 10, 2018, accepted June 7, 2018, date of publication July 2, 2018, date of current version July 19, 2018. | |

utb.fulltext.references | [1] V. Volterra, ‘‘Sur la théorie mathématique des phénomenès héreditaires,’’ J. Math. Pures Appl., vol. 7, no. 9e, pp. 249–298, 1928. [2] Y. Suzuki, T. Nomura, M. Casadio, and P. Morasso, ‘‘Intermittent control with ankle, hip, and mixed strategies during quietstanding: A theoretical proposal based on a double inverted pendulum model,’’ J. Theor. Biol., vol. 310, pp. 55–79, Oct. 2012, doi: 10.1016/j.jtbi.2012.06.019. [3] B. Varszegi, D. Takács, G. Stépán, and S. J. Hogan, ‘‘Stabilizing skateboard speed-wobble with reflex delay,’’ J. Roy. Soc. Interface, vol. 13, no. 121, Aug. 2016, Art. no. 20160345, doi: 10.1098/rsif.2016.0345. [4] G. Orosz, R. E. Wilson, and G. Stépán, ‘‘Traffic jams: Dynamics and control,’’ Philos. Trans. Roy. Soc. London A, Math. Phys. Sci., vol. 368, pp. 4455–4479, Sep. 2010, doi: 10.1098/rsta.2010.0205. [5] J. J. Batzel and F. Kappel, ‘‘Time delay in physiological systems: Analyzing and modeling its impact,’’ Math. Biosci., vol. 234, no. 2, pp. 61–74, Dec. 2011, doi: 10.1016/j.mbs.2011.08.006. [6] J. Morávka and K. Michálek, ‘‘Anisochronous model of the metalurgical RH process,’’ Trans. VŠB-Tech. Univ. Ostrava Mech., vol. 14, no. 2, pp. 91–96, 2008. [7] P. Navrátil, L. Pekař, and J. Klapka, ‘‘Possible way of control of heat output in hotwater piping system of district heating,’’ Int. J. Circuits, Syst. Signal Process., vol. 9, pp. 353–361, Oct. 2015. [8] N. Kishor, L. Haarla, and S. Purwar, ‘‘Stability analysis and stabilization of delayed reduced-order model of large electric power system,’’ Int. Trans. Elect. Energy Syst., vol. 26, pp. 1882–1897, Sep. 2016, doi: 10.1002/etep.2182. [9] W. Findensen, J. Pulaczewski, and A. Manitius, ‘‘Multilevel optimization and dynamic coordination of mass flows in a beet sugar plant,’’ Automatica, vol. 6, no. 4, pp. 581–589, 1970. [10] X.-W. Tang, F.-Y. Peng, R. Yan, Y.-H. Gong, and X. Li, ‘‘An effective time domain model for milling stability prediction simultaneously considering multiple modes and cross-frequency response function effect,’’ Int. J. Adv. Manuf. Technol., vol. 86, nos. 1–4, Sep. 2016, doi: 10.1007/s00170-015-8129-4. [11] T. Insperger, D. Lehotzky, and G. Stépán, ‘‘Regenerative delay, parametric forcing and machine tool chatter: A review,’’ IFACPapersOnline, vol. 48, no. 12, pp. 322–327, Jun. 2015, doi: 10.1016/j.ifacol.2015.09.398. [12] W. Zhang, M. S. Branicky, and S. M. Phillips, ‘‘Stability of networked control systems,’’ IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, Feb. 2001, doi: 10.1109/37.898794. [13] Q.-L. Han, Y. Liu, and F. Yang, ‘‘Optimal communication networkbased H∞ quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 426–434, Feb. 2016, doi: 10.1109/TNNLS.2015.2411290. [14] J. K. Hale and S. V. Lunel, Introduction to Functional Differential Equations. New York, NY, USA: Springer, 1993. [15] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Basel, Switzerland: Birkhüser, 2003. [16] W. Michiels and S.-I. Niculescu, Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, 2nd ed. Philadelphia, PA, USA: SIAM, 2014. [17] J. J. Loiseau, W. Michiels, S.-I. Niculescu, and R. Sipahi, Eds., Topics in Time Delay Systems: Analysis, Algorithm and Control. Berlin, Germany: Springer, 2009. [18] R. Sipahi, T. Vyhlídal, S.-I. Niculescu, and P. Pepé, Eds., Time Delay Systems: Methods, Applications and New Trends (Lecture Notes in Control and Information Sciences), vol. 423. New York, NY, USA: Springer, 2012. [19] E. Fridman, Introduction to Time-Delay Systems: Analysis and Control. Basel, Switzerland: Birkhüser, 2014. [20] T. Vyhlídal, J.-F. Lafay, and R. Sipahi, Eds., Delay Systems: From Theory to Numerics and Applications. New York, NY, USA: Springer, 2014. [21] E. Witrant, E. Fridman, O. Sename, and L. Dugard, Eds., Recent Results on Time-Delay Systems: Analysis and Control. Cham, Germany: Springer, 2016. [22] A. Seuret, L. Hetel, J. Daafouz, and K. H. Johansson, Eds., Delays and Networked Control Systems. New York, NY, USA: Springer, 2016. [23] J.-P. Richard, ‘‘Time-delay systems: An overview of some recent advances and open problems,’’ Automatica, vol. 39, no. 10, pp. 1667–1694, 2003, doi: 10.1016/S0005-1098(03)00167-5. [24] K. Gu and S.-L. Niculescu, ‘‘Survey on recent results in the stability and control of time-delay systems,’’ J. Dyn. Syst., Meas., Control, vol. 125, no. 2, pp. 158–165, 2003, doi: 10.1115/1.1569950. [25] A. Kansal and A. Karandikar, ‘‘IP telephony and delay jitter control—An overview,’’ IETE Tech. Rev., vol. 20, no. 4, pp. 289–296, Jul./Aug. 2003, doi: 10.1080/02564602.2003.11417086. [26] J. Wang, M. Zhou, and Y. Li, ‘‘Survey on the end-to-end Internet delay measurements,’’ in High Speed Networks and Multimedia Communications (Lecture Notes Computer Science), vol. 3079, Z. Mammeri and P. Lorenz, Eds. Berlin, Germany: Springer, 2004, pp. 155–166, doi: 10.1007/978-3-540-25969-5_14. [27] J. Chen, J. Benesty, and Y. Huang, ‘‘Time delay estimation in room acoustic environments: An overview,’’ EURASIP J. Adv. Signal Process., vol. 2006, Dec. 2006, Art. no. 26503, doi: 10.1155/ASP/2006/26503. [28] A. Fruchard and R. Schäfke, ‘‘A survey of some results on overstability and bifurcation delay,’’ Discrete Continuous Dyn. Syst., vol. 2, no. 4, pp. 931–965, Dec. 2009. [29] Z. Zhang and M. A. Figliozzi, ‘‘A survey of China’s logistics industry and the impacts of transport delays on importers and exporters,’’ Transp. Rev., vol. 30, no. 2, pp. 179–194, Mar. 2010, doi: 10.1080/01441640902843232. [30] Y. Wang, Y. Xie, and J.-L. Zhou, ‘‘A research survey on teleoperation of space robot though time delay,’’ J. Astronaut., vol. 31, no. 2, pp. 301–306, Feb. 2010, doi: 10.3873/j.issn.1000-1328.2010.02.001. [31] W. Wang, ‘‘An overview of the recent advances in delay-time-based maintenance modelling,’’ Rel. Eng. Syst. Safety, vol. 106, pp. 165–178, Oct. 2012, doi: 10.1016/j.ress.2012.04.004. [32] M. S. de Bianchi, ‘‘Time-delay of classical and quantum scattering processes: A conceptual overview and a general definition,’’ Central Eur. J. Phys., vol. 10, no. 2, pp. 282–319, Apr. 2012, doi: 10.2478/s11534-011-0105-5. [33] Y. Cui, K. N. Lau, R. Wang, H. Huang, and S. Zhang, ‘‘A survey on delay-aware resource control for wireless systems-large deviation theory stochastic Lyapunov drift, and distributed stochastic learning,’’ IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1677–1701, Feb. 2012, doi: 10.1109/TIT.2011.2178150. [34] L.-J. Wang, Q. Li, C.-N. Tong, and Y.-X. Yin, ‘‘Overview of active disturbance rejection control for systems with time-delay,’’ Control Theory Appl., vol. 30, no. 12, pp. 1521–1533, Dec. 2013, doi: 10.7641/CTA.2013.31058. [35] V. Flunkert, I. Fischer, and E. Schöll, ‘‘Dynamics, control and information in delay-coupled systems: An overview,’’ Philos. Trans. Roy. Soc. London A, Math. Phys. Sci., vol. 371, no. 1999, Sep. 2013, Art. no. 20120465, doi: 10.1098/rsta.2012.0465. [36] A. R. Teel, A. Subbaraman, and A. Sferlazza, ‘‘Stability analysis for stochastic hybrid systems: A survey,’’ Automatica, vol. 50, no. 10, pp. 2435–2456, Oct. 2014, doi: 0.1016/j.automatica.2014.08.006. [37] G. Tao, ‘‘Multivariable adaptive control: A survey,’’ Automatica, vol. 50, no. 11, pp. 2737–2764, 2014, doi: 10.1016/j.automatica.2014.10.015. [38] M. Doudou, D. Djenouri, N. Badache, and A. Bouabdallah, ‘‘Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: A review and taxonomy,’’ J. Netw. Comput. Appl., vol. 38, no. 1, pp. 172–184, Feb. 2014, doi: 10.1016/j.jnca.2013.03.012. [39] N. Lu and X. S. Shen, ‘‘Scaling laws for throughput capacity and delay in wireless networks—A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 642–657, 2nd Quart., 2014, doi: 10.1109/SURV.2013.081313.00039. [40] S. Liu and Y. Yang, ‘‘Advances in grey system research (2004–2014),’’ J. Nanjing Univ. Aeronaut. Astronaut., vol. 47, no. 1, pp. 1–18, Feb. 2015, doi: 10.16356/j.1005-2615.2015.01.001. [41] J. Čermák, ‘‘Stability conditions for linear delay difference equations: A survey and perspectives,’’ Tatra Mountains Math. Publications, vol. 63, no. 1, pp. 1–29, May 2015, doi: 10.1515/tmmp-2015-0017. [42] J. Zhu, T. Qi, and J. Chen, ‘‘Small-gain stability conditions for linear systems with time-varying delays,’’ Syst. Control Lett., vol. 81, pp. 42–48, Jul. 2015, doi: 10.1016/j.sysconle.2015.04.009. [43] F. Liao, Y. Liao, and J. Deng, ‘‘The application of predictor feedback in designing a preview controller for discrete-time systems with input delay,’’ Math. Problems Eng., vol. 2016, Jul. 2016, Art. no. 3023915, doi: 10.1155/2016/3023915. [44] M. S. Mahmoud, ‘‘Networked control systems analysis and design: An overview,’’ Arabia J. Sci. Eng., vol. 41, no. 3, pp. 711–758, Mar. 2016, doi: 10.1007/s13369-015-2024-z. [45] J. Qiu, H. Gao, and S. X. Ding, ‘‘Recent advances on fuzzymodel-based nonlinear networked control systems: A survey,’’ IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1207–1217, Feb. 2016, doi: 10.1109/TIE.2015.2504351. [46] K. Wechkunanukul, and H. Grantham, and R. A. Clark, ‘‘Global review of delay time in seeking medical care for chest pain: An integrative literature review,’’ Austal. Crit. Care, vol. 30, no. 1, pp. 13–20, Jan. 2017, doi: 10.1016/j.aucc.2016.04.002. [47] J. E. Normey-Rico and E. F. Camacho, Control of Dead-Time Processes. London, U.K.: Springer, 2007. [48] D. Lehotzky and T. Insperger, ‘‘A pseudospectral Tau approximation for time delay systems and its comparison with other weighted-residual-type methods,’’ Int. J. Numer. Methods Eng., vol. 108, no. 6, pp. 588–613, Oct. 2016, doi: 10.1002/nme.5225. [49] T. Insperger, T. Ersal, and G. Orosz, Eds., Time Delay Systems: Theory, Numerics, Applications, and Experiments. New York, NY, USA: Springer, 2017. [50] W. Michiels and T. Vyhlídal, ‘‘An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type,’’ Automatica, vol. 41, no. 6, pp. 991–998, 2005, doi: 10.1016/j.automatica.2004.11.032. [51] C. Bonnet, A. R. Fioravanti, and J. R. Partington, ‘‘Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis,’’ SIAM J. Control Optim., vol. 49, no. 2, pp. 498–516, 2011, doi: 10.1137/090776275. [52] T. Vyhlídal and P. Zítek, ‘‘QPmR—Quasi-polynomial root-finder: Algorithm update and examples,’’ in Delay Systems: From Theory to Numerics and Applications, T. Vyhlídal, J.-F. Lafay, and R. Sipahi, Eds. New York, NY, USA: Springer, 2014, pp. 299–312, doi: 10.1007/978-3-319-01695-5_22. [53] T. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle, ‘‘A nonsmooth optimization approach for the stabilization of time-delay systems,’’ ESAIM, Control, Optim. Calculus Variations, vol. 14, no. 3, pp. 478–493, Jul./Sep. 2008, doi: 10.1051/cocv:2007060. [54] S. Damak, A. Ferhi, V. Adrieu, M. Di Loreto, and W. Lombardi, ‘‘A bridge between Lyapunov-Krasovskii and spectral approaches for stability of difference equations,’’ IFAC Proc., vol. 46, no. 3, pp. 30–35, Feb. 2013, doi: 10.3182/20130204-3-FR-4031.00166. [55] R. Rabah, G. M. Sklyar, and A. V. Rezounenko, ‘‘Stability analysis of neutral type systems in Hilbert space,’’ J. Differ. Equ., vol. 214, no. 2, pp. 391–428, 2005, doi: 10.1016/j.jde.2004.08.001. [56] J. J. Loiseau, M. Cardelli, and X. Dusser, ‘‘Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable,’’ IMA J. Math. Control, vol. 19, nos. 1–2, pp. 217–227, Mar. 2002, doi: 10.1093/imamci/19.1_and_2.217. [57] J. R. Partington and C. Bonnet, ‘‘Hinf and BIBO stabilization of delay systems of neutral type,’’ Syst. Control Lett., vol. 52, nos. 3–4, pp. 283–288, Jul. 2004, doi: 10.1016/j.sysconle.2003.09.014. [58] D. Breda, S. Maset, and R. Vermiglio, ‘‘Pseudospectral differencing methods for characteristic roots of delay differential equations,’’ SIAM J. Sci. Comput., vol. 27, no. 2, pp. 482–495, 2006, doi: 10.1137/030601600. [59] E. A. Butcher and A. O. Bobrenkov, ‘‘On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations,’’ Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 3, pp. 1541–1554, Mar. 2011, doi: 10.1016/j.cnsns.2010.05.037. [60] Z. Wu and W. Michiels, ‘‘Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method,’’ J. Comput. Appl. Math., vol. 236, no. 9, pp. 2499–2514, Mar. 2012, doi: 10.1016/j.cam.2011.12.009. [61] P. M. Makilla and J. R. Partington, ‘‘Shift operator induced approximations of delay systems,’’ SIAM J. Control Optim., vol. 37, no. 6, pp. 1897–1912, 1999, doi: 10.1137/S0363012998339678. [62] J. R. Partington, ‘‘Some frequency-domain approaches to the model reduction of delay systems,’’ Annu. Rev. Control, vol. 28, no. 1, pp. 65–73, Apr. 2004, doi: 10.1016/j.arcontrol.2004.01.007. [63] K. Ito and F. Kappel, ‘‘The Trotter-Kato theorem and approximation of PDEs,’’ Math. Comput., vol. 67, no. 221, pp. 21–44, Jan. 1998, doi: 10.1090/S0025-5718-98-00915-6. [64] K. Ito and F. Kappel, ‘‘Two families of approximation schemes for delay systems,’’ Results Math., vol. 21, nos. 1–2, pp. 93–137, Mar. 1992. [65] H. Górecki, S. Fuksa, P. Grabowski, P., and A. Korytowski, Analysis and Synthesis of Time Delay Systems. Hoboken, NJ, USA: Wiley, 1989. [66] T. Vyhlídal and P. Zítek, ‘‘Modification of Mikhaylov criterion for neutral time-delay systems,’’ IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2430–2435, Oct. 2009, doi: 10.1109/TAC.2009.2029301. [67] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, ‘‘On the Lambert W function,’’ Adv. Comput. Math., vol. 5, no. 1, pp. 329–359, 1996, doi: 10.1007/BF02124750. [68] L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments. New York, NY, USA: Academic, 1973. [69] C. S. Hsu and K. L. Bhatt, ‘‘Stability charts for second-order dynamical systems with time lag,’’ ASME J. Appl. Mech., vol. 33, no. 1, pp. 119–124, Mar. 1966, doi: 10.1115/1.3624968. [70] R. Datko, ‘‘A procedure for determination of the exponential stability of certain differential-difference equations,’’ Q. Appl. Math., vol. 36, no. 3, pp. 279–292, 1978, doi: 10.1090/qam/508772. [71] Z. V. Rekasius, ‘‘A stability test for systems with delays,’’ in Proc. Joint Autom. Control Conf., vol. 17. San Francisco, CA, USA, 1980, p. 39, Paper TP9-A, doi: 10.1109/JACC.1980.4232120. [72] K. Walton and J. E. Marshall, ‘‘Direct method for TDS stability analysis,’’ IEE Proc. D, Control Theory Appl., vol. 134, no. 2, pp. 101–107, Mar. 1987, doi: 10.1049/ip-d:19870018. [73] J. Chen and H. A. Latchman, ‘‘Frequency sweeping tests for stability independent of delay,’’ IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1640–1645, Sep. 1995, doi: 10.1109/9.412637. [74] J. Chen, G. Gu, and C. N. Nett, ‘‘A new method for computing delay margins for stability of linear delay systems,’’ Syst. Control Lett., vol. 26, no. 2, pp. 107–117, 1995, doi: 10.1016/0167-6911(94)00111-8. [75] P. Fu, S. I. Niculescu, and J. Chen, ‘‘Stability of linear neutral timedelay systems: Exact conditions via matrix pencil solutions,’’ IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 1063–1069, Jun. 2006, doi: 10.1109/TAC.2006.876804. [76] J.-H. Su, ‘‘The asymptotic stability of linear autonomous systems with commensurate time delays,’’ IEEE Trans. Autom. Control, vol. 40, no. 6, pp. 1114–1117, Jun. 1995, doi: 10.1109/9.388696. [77] J. Louisell, ‘‘A matrix method for determining the imaginary axis eigenvalues of a delay system,’’ IEEE Trans. Autom. Control, vol. 46, no. 12, pp. 2008–2012, Dec. 2001, doi: 10.1109/9.975510. [78] R. Bellman and K. L. Cooke, Differential-Difference Equations. London, U.K.: Academic, 1963. [79] L. S. Pontryagin, ‘‘On the zeros of some elementary transcendental functions,’’ Amer. Math. Soc. Transl., vol. 2, no. 1, pp. 95–110, 1955. [80] G. J. Silva, A. Datta, and S. P. Bhattacharyya, ‘‘PI stabilization of first-order systems with time delay,’’ Automatica, vol. 37, no. 12, pp. 2025–2031, Dec. 2001, doi: 10.1016/S0005-1098(01)00165-0. [81] R. Sipahi and N. Olgac, ‘‘Complete stability robustness of third-order LTI multiple time-delay systems,’’ Automatica, vol. 41, no. 8, pp. 1413–1422, Aug. 2005, doi: 10.1016/j.automatica.2005.03.022. [82] F. A. Khasawneh and B. P. Mann, ‘‘A spectral element approach for the stability of delay systems,’’ Int. J. Numer. Meth. Eng., vol. 87, no. 6, pp. 566–592, Aug. 2011, doi: 10.1002/nme.3122. [83] C. P. Vyasarayani, S. Subhash, and T. Kalmar-Nagy, ‘‘Spectral approximations for characteristic roots of delay differential equations,’’ Int. J. Dyn. Control, vol. 2, no. 2, pp. 126–132, Jun. 2014, doi: 10.1007/s40435-014-0060-2. [84] H. Ye, W. Gao, Q. Mou, and Y. Liu, ‘‘Iterative infinitesimal generator discretization-based method for Eigen-analysis of large delayed cyberphysical power system,’’ Electr. Power Syst. Res., vol. 143, pp. 389–399, Feb. 2017, doi: 10.1016/j.epsr.2016.10.016. [85] G. Angelidis and A. Semlyen, ‘‘Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis,’’ IEEE Trans. Power Syst., vol. 11, no. 3, pp. 1209–1217, Aug. 1996, doi: 10.1109/59.535592. [86] H. Ye, Q. Mou, and Y. Liu, ‘‘Enabling highly efficient spectral discretization-based eigen-analysis methods by Kronecker product,’’ IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4148–4150, Sep. 2017, doi: 10.1109/TPWRS.2017.2650781. [87] H. Ye, Q. Mou, and Y. Liu, ‘‘Calculation of critical oscillation modes for large delayed cyber-physical power system using pseudo-spectral discretization of solution operator,’’ IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4464–4476, Nov. 2017, doi: 10.1109/TPWRS.2017.2686008. [88] D. Breda, S. Maset, and R. Vermiglio, ‘‘Approximation of eigenvalues of evolution operators for linear retarded functional differential equations,’’ SIAM J. Numer. Anal., vol. 50, no. 3, pp. 1456–1483, Jun. 2012, doi: 10.1137/100815505. [89] R. H. Fabiano, ‘‘A semidiscrete approximation scheme for neutral delaydifferential equations,’’ Int. J. Numer. Anal. Model., vol. 10, no. 3, pp. 712–726, Jan. 2013. [90] R. H. Fabiano, ‘‘A stability result for a scalar neutral equation with multiple delays,’’ in Proc. 52nd IEEE Conf. Decis. Control, Florence, Italy, Dec. 2013, pp. 1089–1094, doi: 10.1109/CDC.2013.6760027. [91] D. Breda, S. Maset, and R. Vermiglio, Stability of Linear Delay Differential Equations. New York, NY, USA: Springer, 2015. [92] D. Breda, P. Getto, J. S. Sanz, and R. Vermiglio, ‘‘Computing the eigenvalues of realistic Daphnia models by pseudospectral methods,’’ SIAM J. Sci. Comput., vol. 37, no. 6, pp. A2607–A2629, 2015, doi: 10.1137/15M1016710. [93] D. Breda, S. Maset, and R. Vermiglio, ‘‘Pseudospectral methods for stability analysis of delayed dynamical systems,’’ Int. J. Dyn. Control, vol. 2, no. 2, pp. 143–153, Nov. 2014, doi: 10.1007/s40435-013-0041-x. [94] T. Insperger and G. Stépán, Semi-Discretization for Time-Delay Systems. New York, NY, USA: Springer, 2014. [95] Y. Ding, L. M. Zhu, X. J. Zhang, and H. Ding, ‘‘A fulldiscretization method for prediction of milling stability,’’ Int. J. Mach. Tool Manuf., vol. 50, no. 5, pp. 502–509, May 2012, doi: 10.1016/j.ijmachtools.2010.01.003. [96] D. J. Tweten, G. M. Lipp, F. A. Khasawneh, and B. P. Mann, ‘‘On the comparison of semi-analytical methods for the stability analysis of delay differential equations,’’ J. Sound Vib., vol. 331, pp. 4057–4071, Aug. 2012, doi: 10.1016/j.jsv.2012.04.009. [97] D. Lehotzky and T. Insperger, ‘‘Stability of systems with state delay subjected to digital control,’’ in Delay Systems: From Theory to Numerics and Applications, T. Vyhlídal, J.-F. Lafay, and R. Sipahi, Eds. New York, NY, USA: Springer, 2014, pp. 71–84, doi: 10.1007/978-3-319-01695-5_6. [98] X. Tang, F. Peng, R. Yan, Y. Gong, Y. Li, and L. Jiang, ‘‘Accurate and efficient prediction of milling stability with updated full-discretization method,’’ Int. J. Adv. Manuf. Technol., vol. 88, nos. 9–12, pp. 2357–2368, Feb. 2017, doi: 10.1007/s00170-016-8923-7. [99] Y. Ding, L. M. Zhu, X. J. Zhang, and H. Ding, ‘‘Numerical integration method for prediction of milling stability,’’ J. Manuf. Sci. Eng., vol. 133, no. 3, Jun. 2011, Art. no. 031005, doi: 10.1115/1.4004136. [100] C. G. Ozoegwu, ‘‘High order vector numerical integration schemes applied in state space milling stability analysis,’’ Appl. Math. Comput., vol. 273, pp. 1025–1040, Jan. 2016, doi: 10.1016/j.amc.2015.10.069. [101] X. J. Zhang, C. H. Xiong, Y. Ding, and H. Ding, ‘‘Updated numerical integration method for stability calculation of Mathieu equation with various time delays,’’ Nonlinear Dyn., vol. 87, no. 4, pp. 2077–2095, Mar. 2017, doi: 10.1007/s11071-016-3096-3. [102] Y. Ding, L. M. Zhu, X. J. Zhang, and H. Ding, ‘‘Stability analysis of milling via the differential quadrature method,’’ J. Manuf. Sci. Eng., vol. 135, no. 4, Jul. 2013, Art. no. 044502, doi: 10.1115/1.4024539. [103] W. Dong, Y. Ding, X. Zhu, and H. Ding, ‘‘Differential quadrature method for stability and sensitivity analysis of neutral delay differential systems,’’ J. Dyn. Syst. Meas. Control, vol. 139, no. 4, Feb. 2017, Art. no. 044504, doi: 10.1115/1.4035167. [104] X.-P. Chen and H. Liu, ‘‘A novel method to determine the local stability of the n-species Lotka-Volterra system with multiple delays,’’ Math. Problems Eng., vol. 2016, Nov. 2016, Art. no. 7920482, doi: 10.1155/2016/7920482. [105] X.-P. Chen and H. Dai, ‘‘Stability analysis of time-delay systems using a contour integral method,’’ Appl. Math. Comput., vol. 273, pp. 390–397, Jan. 2016, doi: 10.1016/j.amc.2015.09.094. [106] Q. Xu and Z. Wang, ‘‘Exact stability test of neutral delay differential equations via a rough estimation of the testing integral,’’ Int. J. Dyn. Control, vol. 2, no. 2, Jun. 2014, pp. 154–163, doi: 10.1007/s40435-013-0044-7. [107] Q. Xu, G. Stépán, and Z. Wang, ‘‘Numerical stability test of linear timedelay systems of neutral type,’’ in Time Delay Systems Theory, Numerics, Applications, and Experiments, T. Insperger, T. Ersal, and G. Orosz, Eds. New York, NY, USA: Springer, 2017, pp. 77–91, doi: 10.1007/978-3-319-53426-8_6. [108] S. Duan, S. J. Ni, and A. G. Ulsoy, ‘‘Decay function estimation for linear time delay systems via the Lambert W function,’’ J. Vib. Control, vol. 18, no. 10, pp. 1462–1473, Sep. 2012, doi: 10.1177/1077546311408168. [109] S. Yi, S. Duan, P. W. Nelson, and A. G. Ulsoy, ‘‘Analysis and control of time delay systems using the LambertWDDE toolbox,’’ in Delay Systems: From Theory to Numerics and Applications, T. Vyhlídal, J.-F. Lafay, and R. Sipahi, Eds. New York, NY, USA: Springer, 2014, pp. 271–284, 10.1007/978-3-319-01695-5_20. [110] R. Cepeda-Gomez and W. Michiels, ‘‘Special cases in using the matrix Lambert W function for the stability analysis of high-order linear systems with time delay,’’ IFAC-PapersOnline, vol. 48, no. 12, pp. 7–12, Sep. 2015, doi: 10.1016/j.ifacol.2015.09.344. [111] N. Choudhary, J. Sivaramakrishnan, and I. N. Kar, ‘‘Analysis of higher order time delay systems using Lambert W function,’’ J. Dyn. Syst. Meas. Control, vol. 139, no. 11, pp. 114506–114506, Aug. 2017, doi: 10.1115/1.4036874. [112] R. Cepeda-Gomez. (Aug. 2017). ‘‘Finding the dominant roots of a time delay system without using the principal branch of the Lambert W function.’’ [Online]. Available: https://arxiv.org/abs/1708.03606 [113] S. Surya, C. P. Vyasarayani, and T. Kalmar-Nagy, ‘‘Homotopy continuation for characteristic roots of delay differential equations using the Lambert W function,’’ J. Vib. Control, Jun. 2017, doi: 10.1177/1077546317717629. [114] I. Boussaada, W. Michiels, and S.-I. Niculescu, ‘‘Spectral analysis for delay differential-algebraic systems,’’ IFAC Proc., vol. 45, no. 14, pp. 126–131, Jun. 2012, doi: 10.3182/20120622-3-US-4021.00056. [115] M. V. S. Frasson, ‘‘Large time behavior of neutral delay systems,’’ Ph.D. dissertation, Fac. Math., Natural Sci., Thomas Stieltjes Inst. Math., Leiden Univ., Leiden, The Netherlands, 2005. [116] D. Breda, ‘‘On characteristic roots and stability charts of delay differential equations,’’ Int. J. Robust. Nonlin., vol. 22, no. 8, pp. 892–917, Apr. 2012, doi: 10.1002/rnc.1734. [117] L. H. V. Nguyen, A. R. Fioravanti, and C. Bonnet, ‘‘Analysis of neutral systems with commensurate delays and many chains of poles asymptotic to same points on the imaginary axis,’’ IFAC Proc., vol. 10, no. 1, pp. 120–125, Jun. 2012, doi: 10.3182/20120622-3-US-4021.00036. [118] L. H. V. Nguyen and C. Bonnet, ‘‘H∞-stability analysis of various classes of neutral systems with commensurate delays and with chains of poles approaching the imaginary axis,’’ in Proc. 54th IEEE Conf. Decis. Control, Osaka, Japan, Dec. 2015, pp. 6416–6421, doi: 10.1109/CDC.2015.7403230. [119] R. Rabah, G. M. Sklyar, and P. Y. Barkhayev, ‘‘Stability and stabilizability of mixed retarded-neutral type systems,’’ ESAIM, Control, Optim. Calculus Variations, vol. 18, no. 3, pp. 656–692, Jul./Sep. 2012, doi: 10.1051/cocv/2011166. [120] D. Avanessoff, A. R. Fioravanti, and C. Bonnet, ‘‘YALTA: A MATLAB toolbox for the Hinf-stability analysis of classical and fractional systems with commensurate delays,’’ IFAC Proc., vol. 46, no. 2, pp. 839–844, Feb. 2013, doi: 10.3182/20130204-3-FR-2033.00222. [121] E. Jarlebring, W. Michiels, and K. Meerbergen, ‘‘The infinite Arnoldi method and an application to time-delay systems with distributed delays,’’ in Time Delay Systems: Methods, Applications and New Trends (Lecture Notes Control Inf. Sciences), vol. 423, R. Sipahi, T. Vyhlídal, S.-I. Niculescu, and P. Pepé, Eds. New York, NY, USA: Springer, 2012, doi: 10.1007/978-3-642-25221-1_17. [122] D. M. Bortz, ‘‘Eigenvalues for a two-lag linear delay differential equation,’’ IFAC-PapersOnline, vol. 48, no. 12, pp. 13–16, Sep. 2015, doi: 10.1016/j.ifacol.2015.09.345. [123] X. Niu, H. Ye, Y. Liu, and X. Liu, ‘‘Padé approximation based method for computation of eigenvalues for time delay power system,’’ in Proc. 48th Int. Univ. Power Eng. Conf. (UPEC), Dublin, Ireland, 2013, pp. 1–4, doi: 10.1109/UPEC.2013.6714971. [124] R. Farkh, K. Laabidi, and M. Ksouri, ‘‘Stabilizing sets of PI/PID controllers for unstable second order delay system,’’ Int. J. Autom. Comput., vol. 11, no. 2, pp. 210–222, Apr. 2014, doi: 10.1007/s11633-014-0783-8. [125] H. Wang, J. Liu, and Y. Zhang, ‘‘New results on eigenvalue distribution and controller design for time delay systems,’’ IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2886–2901, Jun. 2017, doi: 10.1109/TAC.2016.2637002. [126] M. Saadvandi, K. Meerberger, and E. Jarlebring, ‘‘On dominant poles and model reduction of second order time-delay systems,’’ Appl. Numer. Math., vol. 62, no. 1, pp. 21–34, Jan. 2012, doi: 10.1016/j.apnum.2011.09.005. [127] M. Saadvandi, K. Meerberger, and W. Desmet, ‘‘Parametric dominant pole algorithm for parametric model order reduction,’’ J. Comput. Appl. Math., vol. 259, pp. 259–280, Mar. 2014, doi: 10.1016/j.cam.2013.09.012. [128] J. Rommes and N. Martins, ‘‘Computing large-scale system eigenvalues most sensitive to parameter changes, with applications to power system small signal stability,’’ IEEE Trans. Power Syst., vol. 23, no. 2, pp. 434–442, May 2008, doi: 10.1109/TPWRS.2008.920050. [129] T. C. Ionescu and O. V. Iftime, ‘‘Moment matching with prescribed poles and zeros for infinite-dimensional systems,’’ in Proc. Amer. Control Conf. (ACC), Fairmont Queen Elizabeth, Montréal, QC, Canada, 2012, pp. 1412–1417, doi: 10.1109/ACC.2012.6314704. [130] W. Michiels and H. U. Ünal, ‘‘Evaluating and approximating FIR filters: An approach based on functions of matrices,’’ IEEE Trans. Autom. Control, vol. 60, no. 2, pp. 463–468, Feb. 2015, doi: 10.1109/TAC.2014.2326295. [131] I. P. Duff, S. Gugercin, C. Beattie, C. Poussot-Vassal, and C. Seren, ‘‘H2-optimality conditions for reduced time-delay systems of dimension one,’’ IFAC-PapersOnline, vol. 49, no. 10, pp. 7–12, Jul. 2016, doi: 10.1016/j.ifacol.2016.07.464. [132] R. M. Corless, ‘‘Pseudospectra of exponential matrix polynomials,’’ Theor. Comput. Sci., vol. 479, pp. 70–80, Apr. 2013, doi: 10.1016/j.tcs.2012.10.021. [133] J. M. Sepulcre, ‘‘On the result of invariance of the closure set of the real projections of the zeros of an important class of exponential polynomials,’’ Math. Problems Eng., vol. 2016, May 2016, Art. no. 3605690, doi: 10.1155/2016/3605690. [134] J. M. Sepulcre and T. Vidal, ‘‘On the non-isolation of the real projections of the zeros of exponential polynomials,’’ J. Math. Anal. Appl., vol. 437, no. 1, pp. 513–526, May 2016, doi: 10.1016/j.jmaa.2016.01.014. [135] A. V. Egorov and S. Modié, ‘‘Estimate of the exponential decay of linear delay systems via the Lyapunov matrix,’’ in Recent Results on TimeDelay Systems, E. Witrant, E. Fridman, O. Sename, and L. Dugard, Eds. New York, NY, USA: Springer, 2016, pp. 89–105, doi: 10.1007/978-3-319-26369-4_5. [136] S. Damak, M. Di Loreto, S. Mondié, and X. Brun, ‘‘Exponential stability with decay rate estimation for linear difference equations,’’ IEEE Trans. Autom. Control, vol. 61, no. 1, pp. 252–257, Jan. 2016, doi: 10.1109/TAC.2015.2437519. [137] A. V. Egorov, C. Cuvas, and S. Modié, ‘‘Necessary and sufficient stability conditions for linear systems with pointwise and distributed delays,’’ Automatica, vol. 80, no. 1, pp. 218–224, Jun. 2017, doi: 10.1016/j.automatica.2017.02.034. [138] F. Milano, ‘‘Small-signal stability analysis of large power systems with inclusion of multiple delays,’’ IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3257–3266, Jul. 2016, doi: 10.1109/TPWRS.2015.2472977. [139] A. Seuret and F. Gouaisbaut, ‘‘Wirtinger-based integral inequality: Application to time-delay systems,’’ Automatica, vol. 49, no. 9, pp. 2860–2866, Sep. 2013, doi: 10.1016/j.automatica.2013.05.030. [140] L. V. Hien and H. Trinh, ‘‘Exponential stability of time-delay systems via new weighted integral inequalities,’’ Appl. Math. Comput., vol. 275, pp. 335–344, Feb. 2013, doi: 10.1016/j.amc.2015.11.076. [141] S. Damak, A. Ferhi, V. Andrieu, M. Di Loreto, and W. Lombardi, ‘‘A bridge between Lyapunov-Krasovskii and spectral approaches for stability of difference equations,’’ in Recent Results on Time-Delay Systems Analysis and Control, E. Witrant, E. Fridman, O. Sename, and L. Dugard, Eds. New York, NY, USA: Springer, 2016, pp. 107–124, doi: 10.3182/20130204-3-FR-4031.00166. [142] X.-Y. Zhang and J.-Q. Sun, ‘‘A note on the stability of linear dynamical systems with time delay,’’ J. Vib. Control, vol. 20, no. 10, pp. 1520–1527, Jul. 2014, doi: 10.1177/1077546312473319. [143] K. Gu, ‘‘A further refinement of discretized Lyapunov functional method for the time-delay systems,’’ in Proc. Amer. Control Conf. (ACC), Arlington, VA, USA, 2001, pp. 3998–4003, doi: 10.1109/ACC.2001.946305. [144] F. Milano and M. Anghel, ‘‘Impact of time delays on power system stability,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 4, pp. 889–900, Apr. 2012, doi: 10.1109/TCSI.2011.2169744. [145] A. Domoshnitsky, A. Maghakyan, and L. Berezansky, ‘‘W-transform for exponential stability of second order delay differential equations without damping terms,’’ J. Inequalities Appl., vol. 2017, no. 1, Jan. 2017, Art. no. 20, doi: 10.1186/s13660-017-1296-0. [146] H. Wang, J.-C. Liu, F. Yang, and Y. Zhang, ‘‘Controller design for delay systems via eigenvalue assignment—On a new result in the distribution of Quasi-polynomial roots,’’ Int. J. Control, vol. 88, no. 12, pp. 2457–2476, Jun. 2015, doi: 10.1080/00207179.2015.1048290. [147] I. Boussaada and S.-I. Niculescu, ‘‘Characterizing the codimension of zero singularities for time-delay systems,’’ Acta Appl. Math., vol. 145, no. 1, pp. 47–88, Oct. 2016, doi: 10.1007/s10440-016-0050-9. [148] I. Boussaada and S.-I. Niculescu, ‘‘Computing the codimension of the singularity at the origin for delay systems in the regular case: A Vandermonde-based approach,’’ in Proc. 21st Int. Symp. Math. Theory Netw. Syst., Groningen, The Netherlands, 2014, pp. 1699–1706. [149] I. Boussaada and S.-I. Niculescu, ‘‘Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermondebased approach,’’ IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1601–1606, Jun. 2016, doi: 10.1109/TAC.2015.2480175. [150] J. Louisell, ‘‘Matrix polynomials, similar operators, and the imaginary axis eigenvalues of a matrix delay equation,’’ SIAM J. Control Optim., vol. 53, no. 1, pp. 399–413, 2015, doi: 10.1137/120886236. [151] X.-G. Li, S.-I. Niculescu | |

utb.fulltext.sponsorship | This work was supported in part by the European Regional Development Fund through the Project CEBIA-Tech Instrumentation under Grant CZ.1.05/2.1.00/19.0376 and in part by the National Sustainability Program Project under Grant LO1303 (MSMT-7778/2014). | |

utb.wos.affiliation | [Pekar, Libor] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76005, Czech Republic; [Gao, Qingbin] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL 35487 USA | |

utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, Czech Republic; Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, United States | |

utb.fulltext.projects | CZ.1.05/2.1.00/19.0376 | |

utb.fulltext.projects | LO1303 (MSMT-7778/2014) |