TBU Publications
Repository of TBU Publications

Effect of polyethylene glycol plasticizer on long-term antibacterial activity and the release profile of bacteriocin nisin from polylactide blends

DSpace Repository

Show simple item record

dc.title Effect of polyethylene glycol plasticizer on long-term antibacterial activity and the release profile of bacteriocin nisin from polylactide blends en
dc.contributor.author Holčapková, Pavlína
dc.contributor.author Hurajová, Anna
dc.contributor.author Kucharczyk, Pavel
dc.contributor.author Bažant, Pavel
dc.contributor.author Plachý, Tomáš
dc.contributor.author Miskolczi, Norbert
dc.contributor.author Sedlařík, Vladimír
dc.relation.ispartof Polymers for Advanced Technologies
dc.identifier.issn 1042-7147 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 29
utb.relation.issue 8
dc.citation.spage 2253
dc.citation.epage 2263
dc.type article
dc.language.iso en
dc.publisher John Wiley and Sons Ltd.
dc.identifier.doi 10.1002/pat.4336
dc.relation.uri https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.4336
dc.subject antibacterial properties en
dc.subject biodegradable blend en
dc.subject nisin en
dc.subject polyethylene glycol en
dc.subject polylactic acid en
dc.description.abstract This work describes the synergetic effect of polyethylene glycol (PEG) in polylactide (PLA) blends, wherein the polyether acts as both the plasticizer and functional additive, ensuring the long-term antimicrobial activity of bacteriocin nisin. Two types of PEG with the molecular weights of 1000 and 6000 g.mol−1 (20 wt.%) were used to plasticize the PLA blends. The aforementioned bacteriocin nisin, at concentrations ranging between 0.02 and 0.15 wt.% (8000-60 000 IU.g−1), was incorporated into the samples by the solvent cast technique. The effect of various PEG on the structural, mechanical, and thermal properties of the PLA-based blends were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, stress-strain analysis, differential scanning calorimetry, and dynamic mechanical analysis, respectively. The antibacterial activity of the samples was detected by the agar diffusion technique against Micrococcus luteus. Furthermore, the antibacterial properties of the samples were tested according the ISO 22196 standard against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus, Listeria monocytogenes) bacterial strains. The nisin was detected by high performance liquid chromatography, the device having been equipped with a UV/vis detector. The results show that the PEG, besides its plasticizing effect, significantly enhances the release profile and sustains long-term antibacterial activity of nisin in a PLA matrix. Copyright © 2018 John Wiley & Sons, Ltd. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008097
utb.identifier.obdid 43879683
utb.identifier.scopus 2-s2.0-85047480426
utb.identifier.wok 000437840000011
utb.source j-scopus
dc.date.accessioned 2018-08-03T12:49:40Z
dc.date.available 2018-08-03T12:49:40Z
dc.description.sponsorship LO1504; QJ1310254, MZe, Ministerstvo Zemědělství; IGA/ CPS/2018/003; LO1504; QJ1310254, MZe, Ministerstvo Zemědělství
dc.description.sponsorship Internal Grant Agency of the Tomas Bata University in Zlin [IGA/CPS/2018/003]; Ministry of Agriculture of the Czech Republic [QJ1310254]; Ministry of Education, Youth, and Sports of the Czech Republic [LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Holčapková, Pavlína
utb.contributor.internalauthor Hurajová, Anna
utb.contributor.internalauthor Kucharczyk, Pavel
utb.contributor.internalauthor Bažant, Pavel
utb.contributor.internalauthor Plachý, Tomáš
utb.contributor.internalauthor Sedlařík, Vladimír
utb.fulltext.affiliation Pavlina Holcapkova 1 | Anna Hurajova 1 | Pavel Kucharczyk 1 | Pavel Bazant 1 | Tomas Plachy 1 | Norbert Miskolczi 2 | Vladimir Sedlarik 1 http://orcid.org/0000-0002-7843-0719 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic 2 Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon and Coal Processing, University of Pannonia, H‐8200 VeszprémEgyetem u. 10, Hungary Correspondence Vladimir Sedlarik, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic. Email: sedlarik@utb.cz
utb.fulltext.dates Received: 17 November 2017 Revised: 19 March 2018 Accepted: 11 April 2018
utb.fulltext.references 1. Luckachan GE, Pillai CKS. Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ. 2011;19(3):637‐676. https://doi.org/10.1007/s10924‐011‐0317‐1 2. Scarfato P, Di Maio L, Incarnato L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J Appl Polym Sci. 2015;132(48):42597. https://doi.org/10.1002/app.42597 3. EN 13432:200. Requirements for packaging recoverable through composting and biodegradation—test scheme and evaluation criteria for the final acceptance of packaging; 2000. 4. EN 14995:2006. Plastics—evaluation of compostability—test scheme and specifications; 2006. 5. Joerger RD. Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag Technol Sci. 2007;20(4):231‐273. https://doi.org/10.1002/pts.774 6. Galya T, Sedlarik V, Kuritka I, Sedlarikova J, Saha P. Characterization of antibacterial polymeric films based on poly(vinyl alcohol) and zinc nitrate for biomedical applications. Int J Polym Anal Charact. 2008;13(4):241‐253. https://doi.org/10.1080/10236660802175790 7. Jandikova G, Holcapkova P, Hrabalikova M, Machovsky M, Sedlarik V. Antimicrobial modification of polypropylene with silver nanoparticles immobilized on zinc stearate. Mater Tehnol. 2016;50(6):869‐871. https://doi.org/10.17222/mit.2015.152 8. Kolarova Raskova Z, Hrabalikova M, Sedlarik V. Effect of sodium salicylate on the viscoelastic properties and stability of polyacrylate‐based hydrogels for medical applications. Int J Polym Sci. 2016;5614687. https://doi.org/10.1155/2016/5614687 9. Santos MRE, Fonseca AC, Mendonça PV, et al. Recent developments in antimicrobial polymers: a review. Mater Basel Switz. 2016;9(7). https://doi.org/10.3390/ma9070599 10. Mauriello G, Villani F. Bacteriocins in plastics. In: Lagarón JM, Ocio MJ, López‐Rubio A, eds. Antimicrobial Polymers. New York United States: John Wiley & Sons, Inc; 2011:117‐158 doi:https://doi.org/10.1002/9781118150887.ch6. 11. Tawakkal ISMA, Cran MJ, Miltz J, Bigger SW. A review of poly(lactic acid)‐based materials for antimicrobial packaging. J Food Sci. 2014;79(8):R1477‐R1490. https://doi.org/10.1111/1750‐3841.12534 12. Quirós J, Boltes K, Aguado S, de Villoria RG, Vilatela JJ, Rosal R. Antimicrobial metal‐organic frameworks incorporated into electrospun fibers. Chem Eng J. 2015;262:189‐197. https://doi.org/10.1016/j.cej.2014.09.104 13. Fan W, Zhao Y, Zhang A, Liu Y, Cao Y, Chen J. Effect of a chain extender on the properties of poly(lactic acid)/zinc oxide/copper chlorophyll acid antibacterial nanocomposites. J Appl Polym Sci. 2015;132(9):41561. https://doi.org/10.1002/app.41561 14. Xi X, Zhen W, Bian S. Preparation and properties of polylactic acid/N‐(2‐hydroxyl) propyl‐3‐trimethyl ammonium chitosan chloride‐intercalated saponite nanocomposites. Iran Polym J. 2015;24(3):243‐252. https://doi.org/10.1007/s13726‐015‐0322‐7 15. Belkhir K, Jegat C, Prochazka F, Taha M. Quaternary ammonium‐functionalized polymers in biodegradable matrices: physicochemical properties, morphology, and biodegradability. J Appl Polym Sci. 2017;134(37). n/a‐n/a. doi:https://doi.org/10.1002/app.45261 16. Prapruddivongs C, Sombatsompop N. Roles and evidence of wood flour as an antibacterial promoter for triclosan‐filled poly(lactic acid). Compos Part B Eng. 2012;43(7):2730‐2737. https://doi.org/10.1016/j.compositesb.2012.04.032 17. Regulation (EU) No. 528/2012 of the European Parliament and of the Council Concerning the Making Available on the Market and Use of Biocidal Products; 2012. 18. Irkin R, Esmer OK. Novel food packaging systems with natural antimicrobial agents. J Food Sci Technol. 2015;52(10):6095‐6111. https://doi.org/10.1007/s13197‐015‐1780‐9 19. Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: recent trends and potential applications. Crit Rev Food Sci Nutr. 2016;56(5):817‐834. https://doi.org/10.1080/10408398.2012.729231 20. Bali V, Panesar PS, Bera MB. Trends in utilization of agro‐industrial byproducts for production of bacteriocins and their biopreservative applications. Crit Rev Biotechnol. 2016;36(2):204‐214. https://doi.org/10.3109/07388551.2014.947916 21. Hrabalikova M, Holcapkova P, Suly P, Sedlarik V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) polymer matrix crosslinked with nontoxic dicarboxylic acid. J Appl Polym Sci. 2016;133(28). https://doi.org/10.1002/app.43674 22. Stoyanova LG, Ustyugova EA, Netrusov AI. Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol. 2012;48(3):229‐243. https://doi.org/10.1134/S0003683812030143 23. Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr. 2016;56(8):1262‐1274. https://doi.org/10.1080/10408398.2013.763765 24. Zehetmeyer G, Meira SMM, Scheibel JM, et al. Influence of melt processing on biodegradable nisin‐PBAT films intended for active food packaging applications. J Appl Polym Sci. 2016;133(13). https://doi.org/10.1002/app.43212 25. Holcapkova P, Hrabalikova M, Stoplova P, Sedlarik V. Core‐shell PLAPVA porous microparticles as carriers for bacteriocin nisin. J Microencapsul. 2017;34(3):243‐249. https://doi.org/10.1080/02652048.2017.1324919 26. Scaffaro R, Botta L, Marineo S, Puglia AM. Incorporation of nisin in poly (ethylene‐co‐vinyl acetate) films by melt processing: a study on the antimicrobial properties. J Food Prot. 2011;74(7):1137‐1143.https://doi.org/10.4315/0362‐028X.JFP‐10‐383 27. Correia RC, Jozala AF, Martins KF, et al. Poly(lactic‐co‐glycolic acid) matrix incorporated with nisin as a novel antimicrobial biomaterial. World J Microbiol Biotechnol. 2015;31(4):649‐659. https://doi.org/10.1007/s11274‐015‐1819‐0 28. Gharsallaoui A, Joly C, Oulahal N, Degraeve P. Nisin as a food preservative: part 2: antimicrobial polymer materials containing nisin. Crit Rev Food Sci Nutr. 2016;56(8):1275‐1289. https://doi.org/10.1080/10408398.2013.763766 29. Kerkeni A, Behary N, Dhulster P, Chihib N‐E, Perwuelz A. Study on the effect of plasma treatment of woven polyester fabrics with respect to nisin adsorption and antibacterial activity. J Appl Polym Sci. 2013;129(2):866‐873. https://doi.org/10.1002/app.38884 30. Neetoo H, Ye M, Chen H. Effectiveness and stability of plastic films coated with nisin for inhibition of Listeria monocytogenes. J Food Prot. 2007;70(5):1267‐1271. 31. Holcapkova P, Kolarova Raskova Z, Hrabalikova M, Salakova A, Drbohlav J, Sedlarik V. Isolation and thermal stabilization of bacteriocin nisin derived from whey for antimicrobial modifications of polymers. Int J Polym Sci 2017:3072582. doi:https://doi.org/10.1155/2017/3072582, 1, 7 32. Pelegri‐O'Day EM, Lin E‐W, Maynard HD. Therapeutic protein‐polymer conjugates: advancing beyond PEGylation. J Am Chem Soc. 2014;136(41):14323‐14332. https://doi.org/10.1021/ja504390x 33. Guiotto A, Pozzobon M, Canevari M, Manganelli R, Scarin M, Veronese FM. PEGylation of the antimicrobial peptide nisin A: problems and perspectives. Farm Soc Chim Ital 1989. 2003;58(1):45‐50. https://doi.org/10.1016/S0014‐827X(02)01301‐0 34. Cutter CN, Willett JL, Siragusa GR. Improved antimicrobial activity of nisin‐incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol. 2001;33(4):325‐328. 35. ASTM D882‐12:2012. Standard test method for tensile properties of thin plastic sheeting; 2012. 36. Holcapkova P, Stloukal P, Kucharczyk P, Omastova M, Kovalcik A. Anti‐hydrolysis effect of aromatic carbodiimide in poly(lactic acid)/wood flour composites. Compos Part Appl Sci Manuf. 2017;103:283‐291. https://doi.org/10.1016/j.compositesa.2017.10.003 37. Lim L‐T, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820‐852. https://doi.org/10.1016/j.progpolymsci.2008.05.004 38. ISO 22196:2007. Plastics—measurement of antibacterial activity on plastics surfaces; 2007. 39. Phaechamud T, Chitrattha S. Pore formation mechanism of porous poly(dl‐lactic acid) matrix membrane. Mater Sci Eng C. 2016;61:744‐752. https://doi.org/10.1016/j.msec.2016.01.014 40. Utracki LA. Thermodynamics of polymer blends. In: Utracki LA, ed. Polymer Blends Handbook. Dordrecht: Springer; 2003:123‐201 https://doi.org/10.1007/0‐306‐48244‐4_2. 41. Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio‐preservation and shelf‐life extension. Int Dairy J. 2006;16(9):1058‐1071. https://doi.org/10.1016/j.idairyj.2005.10.026 42. Liu LS, Finkenstadt VL, Liu C‐K, Jin T, Fishman ML, Hicks KB. Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J Appl Polym Sci. 2007;106(2):801‐810. https://doi.org/10.1002/app.26590 43. Sungsanit K, Kao N, Bhattacharya S. n. Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci. 2012;52(1):108‐116. https://doi.org/10.1002/pen.22052 44. Mohapatra AK, Mohanty S, Nayak SK. Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay: a study of crystallization kinetics, rheology, and compostability. J Thermoplast Compos Mater. 2016;29(4):443‐463. https://doi.org/10.1177/0892705713518812 45. Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer. 2003;44(19):5701‐5710. https://doi.org/10.1016/S0032‐3861(03)00614‐1 46. Yu Y, Cheng Y, Ren J, Cao E, Fu X, Guo W. Plasticizing effect of poly(-ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. J Appl Polym Sci. 2015;132(16). n/a‐n/a. doi:https://doi.org/10.1002/app.41808 47. Cuénoud M, Bourban P‐E, Plummer CJG, Månson J‐AE. Plasticization of poly‐L‐lactide for tissue engineering. J Appl Polym Sci. 2011;121(4):2078‐2088. https://doi.org/10.1002/app.33835 48. Bruna JE, Quilodrán H, Guarda A, Rodríguez F, Galotto MJ, Figueroa P. Development of antibacterial MtCu/PLA nanocomposites by casting method for potential use in food packaging. J Chil Chem Soc. 2015;60(3):3009‐3014. https://doi.org/10.4067/S0717‐97072015000300007 49. Hughes J. The effects of solvent mixture on the thermal and mechanical properties of solvent cast poly‐lactic acid (PLA) film [M.S. thesis]. December 2011. https://tigerprints.clemson.edu/all_theses/1263. 50. Li F‐J, Zhang S‐D, Liang J‐Z, Wang J‐Z. Effect of polyethylene glycol on the crystallization and impact properties of polylactide‐based blends. Polym Adv Technol. 2015;26(5):465‐475. https://doi.org/10.1002/pat.3475 51. Meaurio E, Hernandez‐Montero N, Zuza E, Sarasua J‐R. Miscible blends based on biodegradable polymers. In: Thomas S, Grohens Y, Jyotishkumar P, eds. Characterization of Polymer Blends: Miscibility, Morphology and Interfaces. Germany: Wiley‐VCH Verlag GmbH & Co. KGaA; 2014:7‐92 doi:https://doi.org/10.1002/9783527645602.ch02. 52. Courgneau C, Domenek S, Guinault A, Avérous L, Ducruet V. Analysis of the structure‐properties relationships of different multiphase systems based on plasticized poly(lactic acid). J Polym Environ. 2011;19(2):362‐371. https://doi.org/10.1007/s10924‐011‐0285‐5 53. Nagarajan V, Mohanty AK, Misra M. Crystallization behavior and morphology of polylactic acid (PLA) with aromatic sulfonate derivative. J Appl Polym Sci. 2016;133(28). https://doi.org/10.1002/app.43673 54. Rieger J. The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Test. 2001;20(2):199‐204. https://doi.org/10.1016/S0142‐9418(00)00023‐4 55. ASTM D4065‐01:2001. Standard practice for plastics: dynamic mechanical properties: determination and report of procedures; 2001. 56. Persson M, Lorite GS, Cho S‐W, Tuukkanen J, SkrifvarsM. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties. ACS Appl Mater Interfaces. 2013;5(15):6864‐6872. https://doi.org/10.1021/am401895f 57. Kuwano K, Tanaka N, Shimizu T, Nagatoshi K, Nou S, Sonomoto K. Dual antibacterial mechanisms of nisin Z against gram‐positive and gram‐negative bacteria. Int J Antimicrob Agents. 2005;26(5):396‐402. https://doi.org/10.1016/j.ijantimicag.2005.08.010 58. Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci. 1997;66(8):1495‐1505. https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8%3C1495
utb.fulltext.sponsorship Internal Grant Agency of the Tomas Bata University in Zlin, Grant/Award Number: IGA/CPS/2018/003; Ministry of Agriculture of the Czech Republic, Grant/Award Number: QJ1310254; Ministry of Education, Youth, and Sports of the Czech Republic, Grant/Award Number: LO1504
utb.fulltext.sponsorship This work was co‐funded by the Ministry of Agriculture of the Czech Republic (project no. QJ1310254) and the Ministry of Education, Youth, and Sports of the Czech Republic (project no. LO1504). P. Holcapkova is grateful for the support received from the Internal Grant Agency of Tomas Bata University in Zlin (project no. IGA/CPS/2018/003).
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, Zlin, Czech Republic; Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon and Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, Hungary
utb.fulltext.projects IGA/CPS/2018/003
utb.fulltext.projects QJ1310254
utb.fulltext.projects LO1504
Find Full text

Files in this item

Show simple item record