TBU Publications
Repository of TBU Publications

Effects of polyphenols on cell viability of selected varieties of grapes berries and pomace

DSpace Repository

Show simple item record


dc.title Effects of polyphenols on cell viability of selected varieties of grapes berries and pomace en
dc.contributor.author Capáková, Zdenka
dc.contributor.author Humpolíček, Petr
dc.contributor.author Mlček, Jiří
dc.relation.ispartof Acta Scientiarum Polonorum, Hortorum Cultus
dc.identifier.issn 1644-0692 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 17
utb.relation.issue 2
dc.citation.spage 115
dc.citation.epage 121
dc.type article
dc.language.iso en
dc.publisher Wydawnictwo Akad Rolniczej W Lublinie
dc.identifier.doi 10.24326/asphc.2018.2.10
dc.relation.uri http://www.hortorumcultus.actapol.net/pub/17_2_115.pdf
dc.subject proliferation en
dc.subject grapes en
dc.subject pomace en
dc.subject phenolic compound en
dc.subject cancer en
dc.description.abstract The effect on cell viability and content of PhC of three grapes varieties – Moravian Muscat, Blue Burgundy and Lemberger is presented. The effect of polyphenols from wine and grapes was studied for many times, but the effect of pomace, the by-product of wine production, was neglected. Thus study is devoted to compare the effect of berries and pomace on cell viability in context of their utilization as source of bioactive compounds. Effect on viability of human keratinocytes (HaCaT) was investigated in vitro using following concentrations of PhC in cultivation medium: 25, 50, 75 and 100 µg·ml–1. The results show that the content of PhC in berries and pomace was similar and the cell viability decreased with increasing concentrations of PhC, in most cases. The impact on cell viability also depends on individual variety of grapes. © Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007965
utb.identifier.obdid 43878238
utb.identifier.scopus 2-s2.0-85046767541
utb.identifier.wok 000436362000010
utb.source j-scopus
dc.date.accessioned 2018-07-27T08:47:36Z
dc.date.available 2018-07-27T08:47:36Z
dc.description.sponsorship LO1504, NPU, Northwestern Polytechnical University; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic Program NPU I [LO1504]
dc.rights Attribution-NonCommercial-NoDerivs 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Capáková, Zdenka
utb.contributor.internalauthor Humpolíček, Petr
utb.contributor.internalauthor Mlček, Jiří
utb.fulltext.affiliation Zdenka Capakova 1 , Petr Humpolicek 1 , Jiri Mlcek 2  1 Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic 2 Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
utb.fulltext.dates -
utb.fulltext.references Ali, A., Hoeflich, K.P., Woodgett, J.R. (2001). Glycogen synthase kinase-3: properties, functions, and regulation. Chem. Rev., 101, 2527–2540. Bonfili, L., Cecarini, V., Amici, M., Cuccioloni, M., Angeletti, M., Keller, J.N., Eleuteri, A.M. (2008). Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. FEBS J., 275, 5512–5526. Boukamp, P., Petrussevska, R., Breitkreutz, D., Hornung, J., Markham, A. (1988). Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol., 106, 761–771. de la Cerda-Carrasco, A., López-Solís, R., Nuñez-Kalasic, H., Peña-Neira, A., Obreque-Slier, E. (2014). Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. [in press] Di Lecce, G., Arranz, S., Jáuregui, O., Tresserra-Rimbau, A., Quifer-Rada, P., Lamuela-Raventós, R.M. (2014). Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem., 145, pp. 874–882. Gatek, J., Vrana, D., Lukesova, L., Pospiskova, M., Vazan, P., Melichar, B. (2013). Significance of resection margin as a risk factor for local control of early stage breast cancer. Biomed. Pap-Olomouc, 157, 209–213. Han, X., Shen, T., Lou, H. (2007). Dietary polyphenols and their biological significance. Int. J. Mol. Sci., 8, 950–988. Hakimuddin, F., Tiwari, K., Oaliyath, G., Meckling, K. (2008). Grape and wine polyphenols down-regulate the expression of signal transduction genes and inhibit the growth of estrogen receptor-negative MDA-MB231 tumors in nu/nu mouse xenografts. Nutr. Res., 28, 702–713. Iacopini, P., Baldi, M., Storchi, P., Sebastiani, L. (2008). Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal., 21, 589–598. Jope, R.S., Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci., 29, 95–102. Jurikova, T., Sochor, J., Rop, O., Mlček, J., Balla, S., Szekeres, L., Žitný, R., Zitka, O., Adam, V., Kizek, R. (2012). Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic – A comparative study. Molecules, 17, 8968–8981. Kang, N.J., Shin, S.H., Lee, H.J., Lee, K.W. (2011). Polyphenols as small molecular inhibitors of signalling cascades in carcinogenesis. Pharm. Therap., 130, 310–324. Kucekova, Z., Mlcek, J., Humpolicek, P., Rop, O., Valasek, P., Saha, P. (2011). Phenolic compounds contained in Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effect. Molecules, 16, 9207–9217. Lambert, J.D., Hong, J., Yang, G.Y., Liao, J., Yang, C.S. (2005). Inhibition of carcinogenesis by polyphenols, evidence from laboratory investigations. Am. J. Clin. Nutr., 81, 284–291. Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai, Y., Katakowski, M., Chopp, M., To, S.S. (2010). Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharm., 641, 102–107. Mandel, S., Youdim, M.B. (2004). Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative disease. Free Radic. Bio. Med., 37, 304–317. Mosmann, T. (1973). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 53–63. Mustafi, S.B., Chakraborty, P.K., Raha, S. (2010). Modulation of Akt and ERK1/2 Pathways by Resveratrol in Chronic Myelogenous Leukemia (CML) Cells Results in the Downregulation of Hsp70. PLoS One, 5, e8719, https://doi.org/10.1371/journal.pone.0008719 Neto, C.C. (2007). Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res., 51, 652–664. Patel, R., Ingle, A., Maru, G.B. (2008). Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway. Toxicol. Appl. Pharmacol., 227, 136–146. Poolman, T.M., Ng, L.L., Farmer, P.B., Manson, M.M. (2005). Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signalling. Free Radic. Bio. Med., 39, 118–132. Rockenbach, I.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonalves, A.E.D.S.S., Fett, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem., 127, 174–179. Rodríguez-Bernaldo de Quirós, A., Lage-Yusty, M.A., López-Hernández, J. (2010). Determination of phenolic compounds in macroalgae for human consumption. Food Chem., 121, 634–638. Roy, P., Kalra, N., Prasad, S., George, J., Shukla, Y. (2008). Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signalling pathways. Pharm. Res., 26, 211–217. Sharif, T., Auger, C., Alhosin, M., Ebel, C., Achour, M., Étienne-Selloum, N., Fuhrmann, G., Bronner, C., Schini-Kerth, V.B. (2010). Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redoxsensitive up-regulation of p73 and down-regulation of UHRF1. Eur. J. Cancer, 46, 983–994. Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 16, 24673-24706. Soleas, G.J., Diamandis, E.P., Goldberg, D.M. (1997). Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal., 11, 287–313. Yang, C.S., Landau, J.M., Huang, M.T., Newmark, H.L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr., 21, 381–406. Zinov’eva, V.N., Spasov, A.A. (2011). Mechanisms of the anticancer effects of plant polyphenols. I. Blockade of initiation of carcinogenesis. Biochemistry (Moscow), Suppl., Ser. B Biomed. Chem., 5, 113–123.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).
utb.wos.affiliation [Capakova, Zdenka; Humpolicek, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic; [Mlcek, Jiri] Tomas Bata Univ Zlin, Fac Technol, Dept Food Anal & Chem, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, Czech Republic; Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic
utb.fulltext.projects LO1504
Find Full text

Files in this item

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 International Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International