TBU Publications
Repository of TBU Publications

Colloidal cobalt-doped ZnO nanoparticles by microwave-assisted synthesis and their utilization in thin composite layers with MEH-PPV as an electroluminescent material for polymer light emitting diodes

DSpace Repository

Show simple item record

dc.title Colloidal cobalt-doped ZnO nanoparticles by microwave-assisted synthesis and their utilization in thin composite layers with MEH-PPV as an electroluminescent material for polymer light emitting diodes en
dc.contributor.author Škoda, David
dc.contributor.author Urbánek, Pavel
dc.contributor.author Ševčík, Jakub
dc.contributor.author Münster, Lukáš
dc.contributor.author Nádaždy, Vojtech
dc.contributor.author Cullen, David A.
dc.contributor.author Bažant, Pavel
dc.contributor.author Antoš, Jan
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof Organic Electronics: physics, materials, applications
dc.identifier.issn 1566-1199 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 59
dc.citation.spage 337
dc.citation.epage 348
dc.type article
dc.language.iso en
dc.publisher Elsevier
dc.identifier.doi 10.1016/j.orgel.2018.05.037
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1566119918302581
dc.subject Cobalt-doped zinc oxide en
dc.subject Colloidal nanoparticles en
dc.subject Microwave synthesis en
dc.subject MEH-PPV polymer en
dc.subject Optoelectronics en
dc.subject Polymer light emitting diodes en
dc.description.abstract CoxZn1-xO (x = 0.01, 0.05 and 0.1) nanoparticles were prepared by microwave-assisted polyol method from zinc acetate dihydrate and Co(II) acetylacetonate. The reactions were performed in diethylene glycol (DEG) at 250 °C with the use of oleic acid as a surfactant. Resulting nanoparticle (ca. 10 nm) precipitates were washed with methanol and dried or kept as colloidal solutions redispersed in toluene. Colloidal solutions were mixed with the Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer to produce thin nanocomposite layers with specific optoelectronic properties. The electronic structure in terms of density of states (DOS) of MEH-PPV and MEH-PPV/nanocomposite layers was investigated by recently proposed energy resolved electrochemical impedance spectroscopy method. The MEH-PPV polymer and its nanocomposites with ZnO or CoxZn1-xO nanoparticles were used as thin active layers in polymer light emitting diodes (PLED). The nanocomposite layers exhibited optoelectronic properties which were found to be beneficial as the active layer in PLEDs, exhibiting an order of magnitude enhancement in electroluminescence intensity. A pronounced effect on the opening bias voltage of final devices with CoxZn1-xO nanoparticles was also observed. © 2018 Elsevier B.V. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1007953
utb.identifier.obdid 43878196
utb.identifier.scopus 2-s2.0-85047824252
utb.identifier.wok 000452862400051
utb.identifier.coden OERLA
utb.source j-scopus
dc.date.accessioned 2018-07-27T08:47:35Z
dc.date.available 2018-07-27T08:47:35Z
dc.description.sponsorship CZ.1.05/2.1.00/19.0409; DOE, U.S. Department of Energy; IGA/CPS/2017/008, NPU, Northwestern Polytechnical University; LO1504, NPU, Northwestern Polytechnical University; IGA/CPS/2016/007, NPU, Northwestern Polytechnical University; APVV-14-0891, APVV, Agentúra na Podporu Výskumu a Vývoja; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; DOE, U.S. Department of Energy; Research and Development; ORNL, Oak Ridge National Laboratory
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic -Program NPU I [LO1504]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2016/007, IGA/CPS/2017/008]; Operational Program Research and Development for Innovations - European Regional Development Fund; national budget of Czech Republic [CZ.1.05/2.1.00/19.0409]; Slovak Research and Development Agency [APVV-14-0891]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Škoda, David
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Ševčík, Jakub
utb.contributor.internalauthor Münster, Lukáš
utb.contributor.internalauthor Bažant, Pavel
utb.contributor.internalauthor Antoš, Jan
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.affiliation David Skoda a,∗ , Pavel Urbanek a , Jakub Sevcik a , Lukas Munster a , Vojtech Nadazdy b , David A. Cullen c , Pavel Bazant a , Jan Antos a , Ivo Kuritka a a Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, Zlin, CZ, 760 01, Czech Republic b Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, SK, 845 11, Slovak Republic c Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA ∗ Corresponding author. E-mail address: dskoda@utb.cz (D. Skoda).
utb.fulltext.dates Received 15 March 2018 Received in revised form 22 May 2018 Accepted 25 May 2018 Available online 28 May 2018
utb.fulltext.references [1] C.F. Klingshirn, ZnO: material, physics and applications, ChemPhysChem 8 (2007) 782–803, http://dx.doi.org/10.1002/cphc.200700002. [2] U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.- J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301, http://dx.doi.org/10.1063/1.1992666. [3] N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, Synthesis of colloidal Mn2+:ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films, J. Am. Chem. Soc. 126 (2004) 9387–9398, http://dx.doi.org/10.1021/ja048427j. [4] P. V Radovanovic, D.R. Gamelin, High-temperature ferromagnetism in Ni2+- Doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots, Phys. Rev. Lett. 91 (2003) 157202, http://dx.doi.org/10.1103/PhysRevLett.91.157202. [5] I. Djerdj, Z. Jagličić, D. Arčon, M. Niederberger, Co-doped ZnO nanoparticles: minireview, Nanoscale 2 (2010) 1096, http://dx.doi.org/10.1039/c0nr00148a. [6] H. Saeki, H. Tabata, T. Kawai, Magnetic and electric properties of vanadium doped ZnO films, Solid State Commun. 120 (2001) 439–443, http://dx.doi.org/10.1016/S0038-1098(01)00400-8. [7] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93 (2004) 177206, http://dx.doi.org/10.1103/PhysRevLett.93.177206. [8] C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey, Cobalt-doped ZnO – a room temperature dilute magnetic semiconductor, Appl. Surf. Sci. 247 (2005) 493–496, http://dx.doi.org/10.1016/j.apsusc.2005.01.043. [9] M.L. Dinesha, H.S. Jayanna, S. Mohanty, S. Ravi, Structural, electrical and magnetic properties of Co and Fe co-doped ZnO nanoparticles prepared by solution combustion method, J. Alloy. Comp. 490 (2010) 618–623, http://dx.doi.org/10.1016/j.jallcom.2009.10.120. [10] F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films, Mater. Sci. Eng. R Rep. 62 (2008) 1–35, http://dx.doi.org/10.1016/j.mser.2008.04.002. [11] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films 605 (2016) 2–19, http://dx.doi.org/10.1016/j.tsf.2015.12.064. [12] J. Li, H. Fan, X. Jia, W. Yang, P. Fang, Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route, Appl. Phys. Mater. Sci. Process 98 (2010) 537–542, http://dx.doi.org/10.1007/s00339-009-5489-3. [13] M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. de Morais, C.V. Nakamura, A. de Oliveira Caleare, A.A.W. Hechenleitner, E.A.G. Pineda, Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties, J. Sol. Gel Sci. Technol. 72 (2014) 301–309, http://dx.doi.org/10.1007/s10971-014-3310-z. [14] S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Codoped ZnO nanodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys. 16 (2014) 12741, http://dx.doi.org/10.1039/c4cp01315h. [15] M.W. Maswanganye, K.E. Rammutla, T.E. Mosuang, B.W. Mwakikunga, The effect of Co and in combinational or individual doping on the structural, optical and selective sensing properties of ZnO nanoparticles, Sensor. Actuator. B Chem. 247 (2017) 228–237, http://dx.doi.org/10.1016/j.snb.2017.02.039. [16] M. Yin, S. Liu, One-pot synthesis of Co-doped ZnO hierarchical aggregate and its high gas sensor performance, Mater. Chem. Phys. 149 (2015) 344–349, http://dx.doi.org/10.1016/j.matchemphys.2014.10.027. [17] L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, P. Zhang, Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning, Sensor. Actuator. B Chem. 155 (2011) 782–788, http://dx.doi.org/10.1016/j.snb.2011.01.047. [18] Y.-J. Choi, S.C. Gong, C.-S. Park, H.-S. Lee, J.G. Jang, H.J. Chang, G.Y. Yeom, H.-H. Park, Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition, ACS Appl. Mater. Interfaces 5 (2013) 3650–3655, http://dx.doi.org/10.1021/am400140c. [19] D. Bresser, F. Mueller, M. Fiedler, S. Krueger, R. Kloepsch, D. Baither, M. Winter, E. Paillard, S. Passerini, Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material, Chem. Mater. 25 (2013) 4977–4985, http://dx.doi.org/10.1021/cm403443t. [20] N. Bahadur, A.K. Srivastava, S. Kumar, M. Deepa, B. Nag, Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films, Thin Solid Films 518 (2010) 5257–5264, http://dx.doi.org/10.1016/j.tsf.2010.04.113. [21] W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yan, F. Honggang, Y. Dapeng, Photoluminescence properties of Co-doped ZnO nanorods array fabricated by the solution method, Phys. E Low-Dimensional Syst, Nanostructures 41 (2009) 413–417, http://dx.doi.org/10.1016/j.physe.2008.09.001. [22] B. Panigrahy, M. Aslam, D. Bahadur, Aqueous synthesis of Mn- and Co-Doped ZnO nanorods, J. Phys. Chem. C 114 (2010) 11758–11763, http://dx.doi.org/10.1021/jp102163b. [23] T. Büsgen, M. Hilgendorff, S. Irsen, F. Wilhelm, A. Rogalev, D. Goll, M. Giersig, Colloidal cobalt-doped ZnO nanorods: synthesis, structural, and magnetic properties, J. Phys. Chem. C 112 (2008) 2412–2417, http://dx.doi.org/10.1021/jp077546t. [24] P.V. Radovanovic, N.S. Norberg, K.E. McNally, D.R. Gamelin, Colloidal transition-metal-doped ZnO quantum dots, J. Am. Chem. Soc. 124 (2002) 15192–15193, http://dx.doi.org/10.1021/ja028416v. [25] X. Wang, J. Xu, B. Zhang, H. Yu, J. Wang, X. Zhang, J. Yu, Q. Li, Signature of intrinsic high-temperature ferromagnetism in cobalt-doped zinc oxide nanocrystals, Adv. Mater. 18 (2006) 2476–2480, http://dx.doi.org/10.1002/adma.200600396. [26] F. Ochanda, K. Cho, D. Andala, T.C. Keane, A. Atkinson, W.E. Jones, Synthesis and optical properties of co-doped ZnO submicrometer tubes from electrospun fiber templates, Langmuir 25 (2009) 7547–7552, http://dx.doi.org/10.1021/la802753k. [27] J. El Ghoul, M. Kraini, L. El Mir, Synthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization, J. Mater. Sci. Mater. Electron. 26 (2015) 2555–2562, http://dx.doi.org/10.1007/s10854-015-2722-z. [28] X. Xu, C. Cao, Hydrothermal synthesis of Co-doped ZnO flakes with room temperature ferromagnetism, J. Alloy. Comp. 501 (2010) 265–268, http://dx.doi.org/10.1016/j.jallcom.2010.04.086. [29] J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films, Appl. Phys. Lett. 84 (2004) 1338–1340, http://dx.doi.org/10.1063/1.1650915. [30] L.R. Valério, N.C. Mamani, A.O. de Zevallos, A. Mesquita, M.I.B. Bernardi, A.C. Doriguetto, H.B. de Carvalho, Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films, RSC Adv. 7 (2017) 20611–20619, http://dx.doi.org/10.1039/C7RA01200D. [31] A. Singhal, S.N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, a K. Tyagi, Chemical synthesis and structural and magnetic properties of dispersible cobalt- and nickel-doped ZnO nanocrystals, J. Phys. Chem. C 114 (2010) 3422–3430, http://dx.doi.org/10.1021/jp9105579. [32] J.M. Hodges, J.L. Fenton, J.L. Gray, R.E. Schaak, Colloidal ZnO and Zn 1−x Co x O tetrapod nanocrystals with tunable arm lengths, Nanoscale 7 (2015) 16671–16676, http://dx.doi.org/10.1039/C5NR04425A. [33] G. Clavel, M.-G. Willinger, D. Zitoun, N. Pinna, Solvent dependent shape and magnetic properties of doped ZnO nanostructures, Adv. Funct. Mater. 17 (2007) 3159–3169, http://dx.doi.org/10.1002/adfm.200601142. [34] I. Bilecka, L. Luo, I. Djerdj, M.D. Rossell, M. Jagodič, Z. Jagličić, Y. Masubuchi, S. Kikkawa, M. Niederberger, Microwave-assisted nonaqueous Sol−Gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C 115 (2011) 1484–1495, http://dx.doi.org/10.1021/jp108050w. [35] J. Wojnarowicz, S. Kusnieruk, T. Chudoba, S. Gierlotka, W. Lojkowski, W. Knoff, M.I. Lukasiewicz, B.S. Witkowski, A. Wolska, M.T. Klepka, T. Story, M. Godlewski, Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis, Beilstein J. Nanotechnol. 6 (2015) 1957–1969, http://dx.doi.org/10.3762/bjnano.6.200. [36] M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Microwave-assisted synthesis of colloidal inorganic nanocrystals, Angew. Chem. Int. Ed. 50 (2011) 11312–11359, http://dx.doi.org/10.1002/anie.201101274. [37] M.B. Schütz, L. Xiao, T. Lehnen, T. Fischer, S. Mathur, Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides, Int. Mater. Rev. 6608 (2017) 1–34, http://dx.doi.org/10.1080/09506608.2017.1402158. [38] T.M. Milao, V.R. de Mendonça, V.D. Araújo, W. Avansi, C. Ribeiro, E. Longo, M.I. Bernardi, Microwave hydrothermal synthesis and photocatalytic performance of ZnO and m :ZnO nanostructures ( M = V, Fe, Co), Sci. Adv. Mater. 4 (2012) 54–60, http://dx.doi.org/10.1166/sam.2012.1251. [39] A.A. Lutich, G. Jiang, A.S. Susha, A.L. Rogach, F.D. Stefani, J. Feldmann, Energy transfer versus charge separation in type-II hybrid organic-inorganic nanocomposites, Nano Lett. 9 (2009) 2636–2640, http://dx.doi.org/10.1021/nl900978a. [40] J.H. Warner, A.R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, H. Rubinsztein-Dunlop, Energy transfer dynamics of nanocrystal-polymer composites, J. Phys. Chem. B 109 (2005) 9001–9005, http://dx.doi.org/10.1021/jp044531b. [41] L. Qian, Y. Zheng, K.R. Choudhury, D. Bera, F. So, J. Xue, P.H. Holloway, Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages, Nano Today 5 (2010) 384–389, http://dx.doi.org/10.1016/j.nantod.2010.08.010. [42] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16 (2004) 1009–1013, http://dx.doi.org/10.1002/adma.200306659. [43] M. Lira-Cantu, F.C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2): performance improvement during long-time irradiation, Sol. Energy Mater. Sol. Cells 90 (2006) 2076–2086, http://dx.doi.org/10.1016/j.solmat.2006.02.007. [44] H. Geng, Y. Guo, R. Peng, S. Han, M. Wang, A facile route for preparation of conjugated polymer functionalized inorganic semiconductors and direct application in hybrid photovoltaic devices, Sol. Energy Mater. Sol. Cells 94 (2010) 1293–1299, http://dx.doi.org/10.1016/j.solmat.2010.03.036. [45] C. Sekine, Y. Tsubata, T. Yamada, M. Kitano, S. Doi, Recent progress of high performance polymer OLED and OPV materials for organic printed electronics, Sci. Technol. Adv. Mater. 15 (2014) 034203, http://dx.doi.org/10.1088/1468-6996/15/3/034203. [46] R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Electroluminescence in conjugated polymers, Nature 397 (1999) 121–128, http://dx.doi.org/10.1038/16393. [47] N. Mustapha, K.H. Ibnaouf, Z. Fekkai, A. Hennache, S. Prasad, A. Alyamani, Improved efficiency of solar cells based on BEHP-co-MEH-PPV doped with ZnO nanoparticles, Opt. - Int. J. Light Electron Opt 124 (2013) 5524–5527, http://dx.doi.org/10.1016/J.IJLEO.2013.03.161. [48] N. Tessler, V. Medvedev, M. Kazes, S.H. Kan, U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes, Science (80-. ) 295 (2002) 1506–1508, http://dx.doi.org/10.1126/science.1068153. [49] D. Braun, A.J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58 (1991) 1982–1984, http://dx.doi.org/10.1063/1.105039. [50] M. Kuik, G.-J.A.H. Wetzelaer, H.T. Nicolai, N.I. Craciun, D.M. De Leeuw, P.W.M. Blom, 25th anniversary article: charge transport and recombination in polymer light-emitting diodes, Adv. Mater. 26 (2014) 512–531, http://dx.doi.org/10.1002/adma.201303393. [51] S.A. Carter, J.C. Scott, P.J. Brock, Enhanced luminance in polymer composite light emitting devices, Appl. Phys. Lett. 71 (1997) 1145, http://dx.doi.org/10.1063/1.119848. [52] C. Ton-That, M.R. Phillips, T.-P. Nguyen, Blue shift in the luminescence spectra of MEH-PPV films containing ZnO nanoparticles, J. Lumin. 128 (2008) 2031–2034, http://dx.doi.org/10.1016/j.jlumin.2008.07.004. [53] a. N. Aleshin, I.P. Shcherbakov, F.S. Fedichkin, P.E. Gusakov, Electrical and optical properties of light-emitting field-effect transistors based on MEH-PPV polymer composite films with ZnO nanoparticles, Phys. Solid State 54 (2012) 2508–2513, http://dx.doi.org/10.1134/S1063783412120025. [54] M. Willander, O. Nur, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes, J. Phys. D Appl. Phys. 44 (2011) 224017, http://dx.doi.org/10.1088/0022-3727/44/22/224017. [55] D. Hewidy, A.-S. Gadallah, G.A. Fattah, Hybrid electroluminescent device based on MEH-PPV and ZnO, Phys. B Condens. Matter 507 (2017) 46–50, http://dx.doi.org/10.1016/j.physb.2016.11.034. [56] P. Urbánek, I. Kuřitka, P. Krčmář, The Influence of ZnO content on optoelectronic properties of films from MEH-PPV/ZnO composite, MACMESE’11 Proc. 13th WSEAS Int. Conf. Math. Comput. Methods Sci. Eng, 2011, pp. 411–414 http://www.wseas.us/e-library/conferences/2011/Catania/Catania-73.pdf , Accessed date: 14 February 2017. [57] A. Petrella, M.L. Curri, M. Striccoli, A. Agostiano, P. Cosma, Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: the effects of nanocrystals synthetic route, film deposition and electrolyte composition, Thin Solid Films 595 (2015) 157–163, http://dx.doi.org/10.1016/j.tsf.2015.10.077. [58] I. Musa, F. Massuyeau, E. Faulques, T.P. Nguyen, Investigations of optical properties of MEH-PPV/ZnO nanocomposites by photoluminescence spectroscopy, Synth. Met. 162 (2012) 1756–1761, http://dx.doi.org/10.1016/j.synthmet.2012.01.011. [59] P. Görrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.H. Johannes, W. Kowalsky, T. Riedl, Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes, Adv. Mater. 18 (2006) 738–741, http://dx.doi.org/10.1002/adma.200501957. [60] M. Morales-Masis, F. Dauzou, Q. Jeangros, A. Dabirian, H. Lifka, R. Gierth, M. Ruske, D. Moet, A. Hessler-Wyser, C. Ballif, An indium-free anode for large-area flexible OLEDs: defect-free transparent conductive zinc tin oxide, Adv. Funct. Mater. 26 (2016) 384–392, http://dx.doi.org/10.1002/adfm.201503753. [61] V. Nádaždy, F. Schauer, K. Gmucová, Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors, Appl. Phys. Lett. 105 (2014) 142109, http://dx.doi.org/10.1063/1.4898068. [62] K. Gmucová, V. Nádaždy, F. Schauer, M. Kaiser, E. Majková, Electrochemical spectroscopic methods for the fine band gap electronic structure mapping in organic semiconductors, J. Phys. Chem. C 119 (2015) 15926–15934, http://dx.doi.org/10.1021/acs.jpcc.5b04378. [63] C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003) 101–107, http://dx.doi.org/10.1002/adfm.200390014. [64] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution, Chem. Eur J. 11 (2005) 440–452, http://dx.doi.org/10.1002/chem.200400417. [65] X. Hu, J. Gong, L. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing, Adv. Mater. 20 (2008) 4845–4850, http://dx.doi.org/10.1002/adma.200801433. [66] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. De Miguel, L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Sci. Technol. Adv. Mater. 14 (2013) 023001, http://dx.doi.org/10.1088/1468-6996/14/2/023001. [67] M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals, Nat. Mater. 15 (2016) 141–153, http://dx.doi.org/10.1038/nmat4526. [68] K. Uehara, F. Kitamura, M. Tanaka, The metal-ion-catalyzed alcoholysis of β-dicarbonyl compounds, Bull. Chem. Soc. Jpn. 49 (1976) 493–498, http://dx.doi.org/10.1246/bcsj.49.493. [69] J. Joo, S.G. Kwon, J.H. Yu, T. Hyeon, Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions, Adv. Mater. 17 (2005) 1873–1877, http://dx.doi.org/10.1002/adma.200402109. [70] X. Zhong, Y. Feng, Y. Zhang, I. Lieberwirth, W. Knoll, Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals, Small 3 (2007) 1194–1199, http://dx.doi.org/10.1002/smll.200600684. [71] C. Chen, P. Liu, C. Lu, Synthesis and characterization of nano-sized ZnO powders by direct precipitation method, Chem. Eng. J. 144 (2008) 509–513, http://dx.doi.org/10.1016/j.cej.2008.07.047. [72] R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method, J. Mater. Sci. Mater. Electron. 24 (2013) 96–105, http://dx.doi.org/10.1007/s10854-012-0893-4. [73] G. Socrates, Infrared and Raman Characteristic Group Frequencies : Tables and Charts, John Wiley & Sons, West Sussex, 2007. [74] S. Wang, P. Li, H. Liu, J. Li, Y. Wei, The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels, J. Alloy. Comp. 505 (2010) 362–366, http://dx.doi.org/10.1016/j.jallcom.2010.05.183. [75] M. Gaudon, O. Toulemonde, A. Demourgues, Green coloration of Co-Doped ZnO explained from structural refinement and bond considerations, Inorg. Chem. 46 (2007) 10996–11002, http://dx.doi.org/10.1021/ic701157j. [76] R. He, B. Tang, C. Ton-That, M. Phillips, T. Tsuzuki, Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation, J. Nanoparticle Res. 15 (2013) 2030, http://dx.doi.org/10.1007/s11051-013-2030-6. [77] R. He, R.K. Hocking, T. Tsuzuki, Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity, Mater. Chem. Phys. 132 (2012) 1035–1040, http://dx.doi.org/10.1016/j.matchemphys.2011.12.061. [78] Y.R. Lee, A.K. Ramdas, R.L. Aggarwal, Energy gap, excitonic, and ‘“internal”’ Mn 2+ optical transition in Mn-based II-VI diluted magnetic semiconductors, Phys. Rev. B 38 (1988) 10600–10610, http://dx.doi.org/10.1103/PhysRevB.38.10600. [79] H.A. Weakliem, Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals, J. Chem. Phys. 36 (1962) 2117, http://dx.doi.org/10.1063/1.1732840. [80] I. Balti, A. Mezni, A. Dakhlaoui-Omrani, P. Léone, B. Viana, O. Brinza, L.-S. Smiri, N. Jouini, Comparative study of Ni- and Co-Substituted ZnO nanoparticles: synthesis, optical, and magnetic properties, J. Phys. Chem. C 115 (2011) 15758–15766, http://dx.doi.org/10.1021/jp201916z. [81] D. a Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co 2+ - and Ni 2+-doped ZnO nanocrystals, J. Am. Chem. Soc. 125 (2003) 13205–13218, http://dx.doi.org/10.1021/ja036811v. [82] R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures, Powder Technol. 210 (2011) 18–22, http://dx.doi.org/10.1016/j.powtec.2011.02.005. [83] J.-J. Wu, S.-C. Liu, M.-H. Yang, Room-temperature ferromagnetism in well-aligned Zn[sub 1−x]Co[sub x]O nanorods, Appl. Phys. Lett. 85 (2004) 1027, http://dx.doi.org/10.1063/1.1779958. [84] D.S. Bohle, C.J. Spina, Controlled Co(II) doping of zinc oxide nanocrystals, J. Phys. Chem. C 114 (2010) 18139–18145, http://dx.doi.org/10.1021/jp108391e. [85] S. Yamamoto, Photoluminescence quenching in cobalt doped ZnO nanocrystals, J. Appl. Phys. 111 (2012) 094310, http://dx.doi.org/10.1063/1.4710533. [86] C. Ton-That, G. Stockton, M.R. Phillips, T.-P. Nguyen, C.H. Huang, A. Cojocaru, Luminescence properties of poly- (phenylene vinylene) derivatives, Polym. Int. 57 (2008) 496–501, http://dx.doi.org/10.1002/pi.2373. [87] R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, T. Maturos, Chain organization and photophysics of conjugated polymer in poor solvents: aggregates, agglomerates and collapsed coils, Polymer 48 (2007) 813–826, http://dx.doi.org/10.1016/j.polymer.2006.12.003. [88] P. Urbánek, I. Kuřitka, S. Daniš, J. Toušková, J. Toušek, Thickness threshold of structural ordering in thin MEH-PPV films, Polymer 55 (2014) 4050–4056, http://dx.doi.org/10.1016/j.polymer.2014.05.054. [89] N. Greenham, X. Peng, A. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Phys. Rev. B 54 (1996) 17628–17637, http://dx.doi.org/10.1103/PhysRevB.54.17628. [90] W. Yue, W. Sun, S. Wang, G. Zhang, M. Lan, G. Nie, Influence of photoactive layer structure on device performance of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene)-CuInS2/ZnO solar cells, J. Nanosci. Nanotechnol. 15 (2015) 4421–4425, http://dx.doi.org/10.1166/jnn.2015.9699. [91] J. Toušková, J. Toušek, J. Rohovec, A. Růžička, O. Polonskyi, P. Urbánek, I. Kuřitka, Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures, J. Nanoparticle Res. 16 (2014), http://dx.doi.org/10.1007/s11051-014-2314-5. [92] D.-W. Wang, S.-L. Zhao, Z. Xu, C. Kong, W. Gong, The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer, Org. Electron. 12 (2011) 92–97, http://dx.doi.org/10.1016/j.orgel.2010.09.018. [93] C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes, Phys. Rev. Lett. 91 (2003) 216601, http://dx.doi.org/10.1103/PhysRevLett.91.216601. [94] J. Jayabharathi, C. Karunakaran, V. Kalaiarasi, Thermodynamically feasible photoelectron transfer from bioactive π-expanded imidazole luminophores to ZnO nanocrystals, New J. Chem. 39 (2015) 1800–1813, http://dx.doi.org/10.1039/C4NJ02003K. [95] T.-H. Le, Y. Kim, H. Yoon, Electrical and electrochemical properties of conducting polymers, Polymers 9 (2017) 150, http://dx.doi.org/10.3390/polym9040150. [96] S.A. Moiz, I.A. Khan, W.A. Younis, K.S. Karimov, Conducting Polymers, InTech, 2016, http://dx.doi.org/10.5772/61723. [97] M. Pfeiffer, K. Leo, X. Zhou, J. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Doped organic semiconductors: physics and application in light emitting diodes, Org. Electron. 4 (2003) 89–103, http://dx.doi.org/10.1016/j.orgel.2003.08.004. [98] B. Lüssem, M. Riede, K. Leo, Doping of organic semiconductors, Phys. Status Solidi 210 (2013) 9–43, http://dx.doi.org/10.1002/pssa.201228310. [99] H.T. Nicolai, M. Kuik, G.A.H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J.L. Brédas, P.W.M. Blom, Unification of trap-limited electron transport in semiconducting polymers, Nat. Mater. 11 (2012) 882–887, http://dx.doi.org/10.1038/nmat3384. [100] Y. Zhang, B. De Boer, P.W.M. Blom, Trap-free electron transport in poly( p -phenylene vinylene) by deactivation of traps with n -type doping, Phys. Rev. B Condens. Matter 81 (2010) 1–5, http://dx.doi.org/10.1103/PhysRevB.81.085201. [101] H. Bässler, A. Köhler, Charge transport in organic semiconductors, Top. Curr. Chem. (2011) 1–65, http://dx.doi.org/10.1007/128_2011_218. [102] Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, A.J. Heeger, Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells, Synth. Met. 99 (1999) 243–248, http://dx.doi.org/10.1016/S0379-6779(99)00007-7.
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I (LO1504) and Internal Grant Agency of Tomas Bata University in Zlin (Grant Numbers: IGA/CPS/2016/007 and IGA/CPS/2017/008). This contribution was written with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund and national budget of Czech Republic, within the framework of project CPS - strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). The support from the Slovak Research and Development Agency under Project No. APVV-14-0891 is acknowledged as well. Scanning transmission electron microscopy was performed as part of a user project through Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is a U.S. Department of Energy (DOE) Office of Science user facility and by instrumentation provided by the DOE Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities. Authors thank Dr. J. Prokleska for the magnetic properties measurements. Magnetic properties measurements were performed in the Materials Growth and Measurement Laboratory MGML (see: http://mgml.eu).
utb.wos.affiliation [Skoda, David; Urbanek, Pavel; Sevcik, Jakub; Munster, Lukas; Bazant, Pavel; Antos, Jan; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr Tomase Bati 5678, CZ-76001 Zlin, Czech Republic; [Nadazdy, Vojtech] Slovak Acad Sci, Inst Phys, Dubravska Cesta 9, SK-84511 Bratislava, Slovakia; [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, Zlin, CZ, Czech Republic; Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, SK, Slovakia; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
utb.fulltext.projects LO1504
utb.fulltext.projects IGA/CPS/2016/007
utb.fulltext.projects IGA/CPS/2017/008
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects APVV-14-0891
Find Full text

Files in this item

Show simple item record