Publikace UTB
Repozitář publikační činnosti UTB

Utilization of waste lignin and hydrolysate from chromium tanned waste in blends of hot-melt extruded PVA-starch

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Utilization of waste lignin and hydrolysate from chromium tanned waste in blends of hot-melt extruded PVA-starch en
dc.contributor.author Julinová, Markéta
dc.contributor.author Slavík, Roman
dc.contributor.author Vyoralová, Martina
dc.contributor.author Kalendová, Alena
dc.contributor.author Alexy, Pavol
dc.relation.ispartof Journal of Polymers and the Environment
dc.identifier.issn 1566-2543 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 26
utb.relation.issue 4
dc.citation.spage 1459
dc.citation.epage 1472
dc.type article
dc.language.iso en
dc.publisher Springer
dc.identifier.doi 10.1007/s10924-017-1050-1
dc.relation.uri https://link.springer.com/article/10.1007/s10924-017-1050-1
dc.subject Polyvinyl alcohol en
dc.subject Waste lignin en
dc.subject Hydrolysate en
dc.subject Starch en
dc.subject Biodegradation en
dc.subject Mechanical-technological properties en
dc.description.abstract The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector. © 2017, Springer Science+Business Media, LLC. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1007816
utb.identifier.obdid 43878245
utb.identifier.scopus 2-s2.0-85020732906
utb.identifier.wok 000427640000014
utb.identifier.coden JPENF
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:46Z
dc.date.available 2018-04-23T15:01:46Z
dc.description.sponsorship Tomas Bata University in Zlin [IGA/FT/2016/012]; Ministry of Education, Youth, and Sports of the Czech Republic within the NPU I program [LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Julinová, Markéta
utb.contributor.internalauthor Slavík, Roman
utb.contributor.internalauthor Vyoralová, Martina
utb.contributor.internalauthor Kalendová, Alena
utb.fulltext.affiliation Markéta Julinová 1,2 · Roman Slavík 2 · Martina Vyoralová 2 · Alena Kalendová 3 · Pavol Alexy 4 * Markéta Julinová julinova@ft.utb.cz 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic 2 Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic 3 Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 762 72 Zlín, Czech Republic 4 Department of Plastics and Rubber, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
utb.fulltext.dates Published online: 14 June 2017
utb.fulltext.references 1. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276:1–24 2. Kupec J, Charvatova K, Kresalkova M (2003) Chem Listy 97:155–159 3. Hjermstad TE, Coughlin LJ (1972) US Patent Office 3,652,542 4. Lawton JW (1996) Carbohyd Polym 29:203–208 5. Ishigaki T, Kawagoshi Y, Ike M, Fujita M (1999) World J Microb Biot 15:321–327 6. Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Polym Degrad Stabil 91:1147–1155 7. Guohua Z, Ya L, Cuilan F, Min Z, Caiqiong Z, Zongdao C (2006) Polym Degrad Stab 91:703–711 8. Mendieta-Taboada O, Sobral PJD, Carvalho RA, Habitante AMBQ (2008) Food Hydrocolloids 22:1485–1492 9. Chiellini E, Cinelli P, Corti A, Kenawy ER (2001) Polym Degrad Stab 73:549–555 10. Liao H, Shi K, Peng J, Qu Y, Liao J, Qian Z (2015) J Nanosci Nanotechnol 15:4188–4192 11. Hoffmann J, Řezníčková I, Kozáková J, Růžička J, Alexy P, Bakoš D, Precnerová L (2003) Polym Degrad Stab 79:511–519 12. Langmaier F, Mokrejs P, Kolomaznik K, Mládek M (2008) Waste Manage 28:549–556 13. Su JF, Yuan XY, Huang Z, Xia WL (2010) Polym Degrad Stab 95:1226–1237 14. Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) J Appl Polym Sci 91:756–762 15. Shen Z, Ghasemlou M, Kamdem DP (2015) J Appl Polym Sci 132:41354 16. Monasterio N, Leiza JR, Meaurio E, Sarasua JR (2015) J Appl Polym Sci 132:41745–41745 17. Fan XD, Hsieh YL, Kruchta JM (2002) J Appl Polym Sci 83:929–935 18. Huang MH, Yang MC (2008) Int J Pharmaceut 346:38–46 19. Kaczmarek H, Dabrowska A, Vukovic-Kwiatkowska I (2011) J Appl Polym Sci 122:1936–1945 20. Fishman ML, Coffin DR, Onwulata CI, Willett JL (2006) Carbo-hyd Polym 65:421–429 21. Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V (2011) J Polym Environ 19:69–79 22. Park JS, Park JW, Ruckenstein E (2001) J Appl Polym Sci 80:1825–1834 23. Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Cellulose 20:2981–2989 24. Tanaka T, Lu T, Yuasa S, Yamaura K (2001) Polym Int 50:1103–1108 25. Yee TW, Sin LT, Rahman WA, Samad AA (2011) J Compos Mater 45:2199–2209 26. El-Hefian EA, Nasef MM, Yahaya AH (2011) J Chem 8:91–96 27. Wang S, Ren J, Li W, Sun R, Liu S (2014) Carbohyd Polym 103:94–99 28. Elizondo NJ, Sobral PJA, Menegalli FC (2009) Carbohyd Polym 75:592–598 29. Corradini E, Pineda EAG, Hechenleitner AAW (1999) Polym Degrad Stab 66:199–208 30. Fernandes DM, Hechenleitner AAW, Job AE, Radovanocic E, Pineda EAG (2006) Polym Degrad Stab 91:1192–1201 31. Cinelli P, Chiellini E, Gordon SH, Imam SH (2003) Macromol Symp 197:143–155 32. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) J Biomater Sci Polym 12:267–281 33. Kubo S, Kadla JF (2003) Biomacromolecules 4:561–567 34. Alexy P, Bakos D, Crkonova G, Kolomaznik K, Krsiak M (2001) Macromol Symp 170:41–50 35. Crkoňová G, Alexy P, Bakoš D, Kolomazník K, Šimková B, Prencnerová L (2001) Macromol Symp 170:51–59 36. Sudhamani SR, Prasad MS, Sankar KU (2003) Food Hydrocolloids 17:245–250 37. Sreekumar PA, Al-Harthi MA, De SK (2012) J Appl Polym Sci 123:135–142 38. Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Carbohyd Polym 83:257–263 39. Lee YM, Kim SH, Kim SJ (1996) Polymer 37:5897–5905 40. Björkman A (1956) Svensk Papperstidn 59:477–485 41. Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Polym Degrad Stab 89:553–558 42. Alexy P, Bakos D, Crkonova G, Kramarova Z, Hoffmann J, Julinova M, Chiellini E, Cinelli P (2003) Polym Test 22:811–818 43. Janacova D, Taylor MM, Kolamaznik K, Mladek M, Langmaier F (2000) J Am Leather Chem As 95:55 44. Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Carbohyd Polym 101:11–19 45. Bullock CM, Bicho PA, Zhang Y, Saddler JN (1996) Water Res 30:1280–1284 46. ISO 15705 (2002) Water quality—Determination of the chemical oxygen demand—Small-scale dealer-tube method. Czech Standards Institute, Prague 47. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002). Polym Test 21:665–674 48. Nwufo BT, Griffin GL, Ekpenyong KI (1984) Ind Eng Chem Prod Res Dev 23:594–595 49. Alexy P, Bakoš D, Hanzelová S, Kukolíková L, Kupec J, Charvátová K, Chiellini E (2003) P Cinelli Polym Test 22:801–809 50. Jiang X, Jiang T, Gan L, Zhang X, Dai H, Zhang X (2012) Carbohyd Polym 90:1677–1684 51. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) J Appl Polym Sci 128:3220–3230 52. Sionkowska A, Płanecka A, Kozłowska J, Skopińska-Wiśniewska J (2009) Polym Degrad Stabil 94:383–388 53. Azahari NA, Othman N, Ismail H (2011) J Phys Sci 22:15–31 54. Skokanova M, Dercova K (2008) Chem Listy 102:262–268 55. Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Polym Degrad Stab 93:1884–1890 56. Yun YH, Wee YJ, Byun HS, Yoon SD (2008) J Polym Environ 16:12–18
utb.fulltext.sponsorship This research was supported by an internal grant from Tomas Bata University in Zlin, no. IGA/FT/2016/012 and by projects of the Ministry of Education, Youth, and Sports of the Czech Republic within the NPU I program (contract grant number LO1504).
utb.wos.affiliation [Julinova, Marketa] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic; [Julinova, Marketa; Slavik, Roman; Vyoralova, Martina] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Vavreckova 275, Zlin 76272, Czech Republic; [Kalendova, Alena] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Vavreckova 275, Zlin 76272, Czech Republic; [Alexy, Pavol] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Dept Plast & Rubber, Radlinskeho 9, Bratislava 81237, Slovakia
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, Czech Republic; Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, Czech Republic; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, Zlín, Czech Republic; Department of Plastics and Rubber, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava, Slovakia
utb.fulltext.projects IGA/FT/2016/012
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam