TBU Publications
Repository of TBU Publications

Influence of larval outbreaks on the climate reconstruction potential of an Arctic shrub

DSpace Repository

Show simple item record

dc.title Influence of larval outbreaks on the climate reconstruction potential of an Arctic shrub en
dc.contributor.author Wilmking, Martin
dc.contributor.author Buras, Allan
dc.contributor.author Lehejček, Jiří
dc.contributor.author Lange, Jelena
dc.contributor.author Shetti, Rohan
dc.contributor.author van der Maaten, Ernst
dc.relation.ispartof Dendrochronologia
dc.identifier.issn 1125-7865 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 49
dc.citation.spage 36
dc.citation.epage 43
dc.type article
dc.language.iso en
dc.publisher Elsevier GmbH
dc.identifier.doi 10.1016/j.dendro.2018.02.010
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1125786517301649
dc.subject Alnus viridis ssp. crispa en
dc.subject Cell wall thickness en
dc.subject Eurois occulta en
dc.subject Greenland en
dc.subject Herbivory en
dc.subject Insect attack en
dc.subject Plant-climate interaction en
dc.subject Shrub rings en
dc.subject Tundra en
dc.description.abstract Arctic shrubs have a strong potential for climate and environmental reconstructions in the chronically understudied regions of the high northern latitudes. The climate dynamics of these regions are important to understand because of large-scale feedbacks to the global climate system. However, little is known about other factors influencing shrub ring growth, possibly obscuring their climate signal. For example, as of yet we are not able to differentiate between herbivory or climatically induced growth depressions. Here, we use one of the most common Arctic shrubs, Alnus viridis as a test case to address this question. We sampled Alnus in Kobbefjord, Greenland, measured shrub-ring width and cell wall thickness and built site chronologies of each parameter. We analysed climate-growth relationships, tested their stability over time and employed a pointer-year analysis to detect growth depressions. We employed bootstrapped transfer function stability tests (BTFS) to assess the suitability of our shrub chronologies for climate reconstruction. Correlations with climate data showed strong significantly positive and stable correlations between summer temperature and ring-width with the exception of the recent decade. A climate reconstruction model failed stability tests, when the complete period of record was used for calibration and verification. Wood anatomy analysis uncovered the occurrence of unusual cell structure (very thin cell walls) in the exceptionally narrow ring of 2004, a recorded insect outbreak year in other parts of Greenland. When excluding the affected ring and a recovery period, the reconstruction model passed all tests, suggesting that the unusual 2004 ring was not climate driven, but rather the result of an insect attack. When combining anatomical analysis with traditional ring-width measurements, we move a step further in potentially distinguishing small rings caused by insect attacks from small rings formed in climatically challenging years. While this study does not provide unambiguous evidence, it does provide potential useful methodological combinations to enable more robust climate reconstructions in areas where climatic records are extremely sparse. © 2018 Elsevier GmbH en
utb.faculty Faculty of Logistics and Crisis Management
dc.identifier.uri http://hdl.handle.net/10563/1007787
utb.identifier.obdid 43879220
utb.identifier.scopus 2-s2.0-85043355345
utb.identifier.wok 000433995400005
utb.source j-scopus
dc.date.accessioned 2018-04-23T15:01:44Z
dc.date.available 2018-04-23T15:01:44Z
dc.description.sponsorship CDFW, California Department of Fish and Wildlife
dc.description.sponsorship INTERACT, under the European Community's Seventh Framework Programme [262693]; DFG [Wi 2680/8-1]; Internal Grant Agency of Czech University of Life Sciences Prague [20154304]
utb.contributor.internalauthor Lehejček, Jiří
utb.fulltext.affiliation Martin Wilmking a, , Allan Buras a,1 , Jiří Lehejček b , Jelena Lange a , Rohan Shetti a , Ernst van der Maaten a,2 a Institute of Botany and Landscape Ecology, University Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany b Department of Environmental Security, Faculty of Logistics and Crisis Management, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic ⁎ Corresponding author. E-mail address: wilmking@uni-greifswald.de (M. Wilmking). 1 Current address: Forest Ecology and Forest Management, Wageningen University and Research, Droevendaalsesteg 3a, 6708 PB Wageningen, The Netherlands. 2 Current address: Forest Growth and Woody Biomass Production, TU Dresden, Pienner Str. 8, 01737 Tharandt, Germany.
utb.fulltext.dates Received 1 November 2017; Received in revised form 1 February 2018; Accepted 27 February 2018; Available online 02 March 2018
utb.fulltext.references Ackerman, D., Griffin, D., Hobbie, S.E., Finlay, J.C., 2017. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Change Biol. 23, 4294–4302. Bär, A., Pape, R., Bräuning, A., Löffler, J., 2008. Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. J. Biogeogr. 35, 625–636. Barrio, I.C., Lindén, E., Te Beest, M., Olofsson, J., Rocha, A., Soininen, E.M., Alatalo, J.M., Andersson, T., Asmus, A., Boike, J., Bråthen, K.A., Bryant, J.P., Buchwal, A., Bueno, C.G., Christie, K.S., Denisova, Y.V., Egelkraut, D., Ehrich, D., Fishback, L., Forbes, B.C., Gartzia, M., Grogan, P., Hallinger, M., Heijmans, M.M.P.D., Hik, D.S., Hofgaard, A., Holmgren, M., Høye, T.T., Huebner, D.C., Jónsdóttir, I.S., Kaarlejärvi, E., Kumpula, T., Lange, C.Y.M.J.G., Lange, J., Lévesque, E., Limpens, J., Macias-Fauria, M., Myers-Smith, I., van Nieukerken, E.J., Normand, S., Post, E.S., Schmidt, N.M., Sitters, J., Skoracka, A., Sokolov, A., Sokolova, N., Speed, J.D.M., Street, L.E., Sundqvist, M.K., Suominen, O., Tananaev, N., Tremblay, J.-P., Urbanowicz, C., Uvarov, S.A., Watts, D., Wilmking, M., Wookey, P.A., Zimmermann, H.H., Zverev, V., Kozlov, M.V., 2017. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biol. 11, 2265–2278. Beil, I., Buras, A., Hallinger, M., Smiljanić, M., Wilmking, M., 2015. Shrubs tracing sea surface temperature—Calluna vulgaris on the Faroe Islands. Int. J. Biometeorol. 59, 1567–1575. Blok, D., Sass-Klaassen, U., Schaepman-Strub, G., Heijmans, M.M.P.D., Sauren, P., Berendse, F., 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8, 1169–1179. Bryant, J.P., Chapin, F.S., Reichardt, P.B., Clausen, T.P., 1987. Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72, 510–514. Buchwal, A., Rachlewicz, G., Fonti, P., Cherubini, P., Gärtner, H., 2013. Temperature modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar Biol. 36, 1305–1318. Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124. Buras, A., Hallinger, M., Wilmking, M., 2012. Can shrubs help to reconstruct historical glacier retreats? Environ. Res. Lett. 7, 044031. Buras, A., Lehejček, J., Michalová, Z., Morrissey, R.C., Svoboda, M., Wilmking, M., 2017a. Shrubs shed light on 20th century Greenland Ice Sheet melting. Boreas 46, 667–677. Buras, A., Zang, C., Menzel, A., 2017b. Testing the stability of transfer functions. Dendrochronologia 42, 56–62. Chapin, F.S., Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp, T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman, W.L., Epstein, H.E., Euskirchen, E.S., Hinzman, L.D., Jia, G., Ping, C.-L., Tape, K.D., Thompson, C.D.C., Walker, D.A., Welker, J.M., 2005. Role of land-surface changes in Arctic summer warming. Science 310, 657–660. Christie, K.S., Bryant, J.P., Gough, L., Ravolainen, V.T., Ruess, R.W., Tape, K.D., 2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. BioScience 65, 1123–1133. Cowtan, K., Way, R.G., 2014. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944. D’Arrigo, R., Seager, R., Smerdon, J.E., LeGrande, A.N., Cook, E.R., 2011. The anomalous winter of 1783-1784: was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophys. Res. Lett. 38, L05706. Dahl, M.B., Priemé, A., Brejnrod, A., Brusvang, P., Lund, M., Nymand, J., Kramshøj, M., Ro-Poulsen, H., Haugwitz, M.S., 2017. Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Sci. Rep. 7, 16035. Ewacha, M.V.A., Roth, J.D., Brook, R.K., 2014. Vegetation structure and composition determine snowshoe hare (Lepus americanus) activity at arctic tree line. Can. J. Zool. 92, 789–794. Forbes, B.C., Fauria, M.M., Zetterberg, P., 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Change Biol. 16, 1542–1554. Gamm, C.M., Sullivan, P.F., Buchwal, A., Dial, R.J., Young, A.B., Watts, D.A., Cahoon, S.M.P., Welker, J.M., Post, E., 2017. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 00, 1–15. Hallinger, M., Wilmking, M., 2011. No change without a cause – why climate change remains the most plausible reason for shrub growth dynamics in Scandinavia. New Phytol. 189, 902–908. Hallinger, M., Manthey, M., Wilmking, M., 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 186, 890–899. Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K., Stephens, A., 2005. Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res.: Atmos. 110, D13108. Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642. Havstrom, M., Callaghan, T., Jonasson, S., Svoboda, J., 1995. Little ice age temperature estimated by growth and flowering differences between subfossil and extant shoots of Cassiope tetragona, an Arctic Heather. Funct. Ecol. 9 (4), 650–654. Hodson, D.L.R., Keeley, S.P.E., West, A., Ridley, J., Hawkins, E., Hewitt, H.T., 2013. Identifying uncertainties in Arctic climate change projections. Clim. Dyn. 40, 2849–2865. Hollesen, J., Buchwal, A., Rachlewicz, G., Hansen, B.U., Hansen, M.O., Stecher, O., Elberling, B., 2015. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Glob. Change Biol. 21, 2410–2423. Humbert, L., Kneeshaw, D., 2011. Identifying insect outbreaks: a comparison of a blind-source separation method with host vs non-host analyses. For.: Int. J. For. Res. 84, 453–462. Jørgensen, R.H., Hallinger, M., Ahlgrimm, S., Friemel, J., Kollmann, J., Meilby, H., 2015. Growth response to climatic change over 120 years for Alnus viridis and Salix glauca in West Greenland. J. Veg. Sci. 26, 155–165. Karlsen, S.R., Jepsen, J.U., Odland, A., Ims, R.A., Elvebakk, A., 2013. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understorey plant communities. Oecologia 173, 859–870. Kolishchuk, V.G., 1990. Dendroclimatological study of prostrate woody plants. In: Cook, E.R., Kairiukstis, L.A. (Eds.), Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dordrecht, pp. 51–55. Kozlov, M.V., Zvereva, E.L., 2017. Background Insect Herbivory: Impacts, Patterns and Methodology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–43. Lehejček, J., Buras, A., Svoboda, M., Wilmking, M., 2017. Wood anatomy of Juniperus communis: a promising proxy for palaeoclimate reconstructions in the Arctic. Polar Biol. 40, 977–988. Lund, M., Raundrup, K., Westergaard-Nielsen, A., López-Blanco, E., Nymand, J., Aastrup, P., 2017. Larval outbreaks in West Greenland: instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio 46, 26–38. Myers-Smith, I.H., Bruce, C.F., Martin, W., Martin, H., Trevor, L., Daan, B., Ken, D.T., Marc, M.-F., Ute, S.-K., Esther, L., Stéphane, B., Pascale, R., Luise, H., Andrew, T., Laura Siegwart, C., Stef, W., Jelte, R., Shelly, A.R., Niels Martin, S., Gabriela, S.-S., Sonja, W., Christian, R., Cécile, B.M., Susanna, V., Scott, G., Laia, A.-H., Sarah, E., Virve, R., Jeffrey, W., Paul, G., Howard, E.E., David, S.H., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509. Myers-Smith, I.H., Elmendorf, S.C., Beck, P.S.A., Wilmking, M., Hallinger, M., Blok, D., Tape, K.D., Rayback, S.A., Macias-Fauria, M., Forbes, B.C., Speed, J.D.M., Boulanger-Lapointe, N., Rixen, C., Levesque, E., Schmidt, N.M., Baittinger, C., Trant, A.J., Hermanutz, L., Collier, L.S., Dawes, M.A., Lantz, T.C., Weijers, S., Jorgensen, R.H., Buchwal, A., Buras, A., Naito, A.T., Ravolainen, V., Schaepman-Strub, G., Wheeler, J.A., Wipf, S., Guay, K.C., Hik, D.S., Vellend, M., 2015a. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891. Myers-Smith, I.H., Hallinger, M., Blok, D., Sass-Klaassen, U., Rayback, S.A., Weijers, S., Trant, A.J., Tape, K.D., Naito, A.T., Wipf, S., Rixen, C., Dawes, M.A., Wheeler, J.A., Buchwal, A., Baittinger, C., Macias-Fauria, M., Forbes, B.C., Lévesque, E., Boulanger-Lapointe, N., Beil, I., Ravolainen, V., Wilmking, M., 2015b. Methods for measuring arctic and alpine shrub growth: a review. Earth Sci. Rev. 140, 1–13. Nielsen, S.S., Arx, G.v., Damgaard, C.F., Abermann, J., Buchwal, A., Büntgen, U., Treier, U.A., Barfod, A.S., Normand, S., 2017. Xylem anatomical trait variability provides insight on the climate-growth relationship of Betula nana in Western Greenland. Arct. Antarct. Alp. Res. 49, 359–371. Pedersen, C., Post, E., 2008. Interactions between herbivory and warming in aboveground biomass production of arctic vegetation. BMC Ecol. 8, 17. Pithan, F., Mauritsen, T., 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184. Post, E., Pedersen, C., 2008. Opposing plant community responses to warming with and without herbivores. Proc. Natl. Acad. Sci. 105, 12353–12358. Rayback, S.A., Henry, G.H.R., 2006. Reconstruction of summer temperature for a Canadian high arctic site from retrospective analysis of the dwarf shrub, Cassiope tetragona. Arct. Antarct. Alp. Res. 38, 228–238. Rayback, S.A., Henry, G.H.R., Lini, A., 2012. Multiproxy reconstructions of climate for three sites in the Canadian High Arctic using Cassiope tetragona. Clim. Change 114, 593–619. Rinas, C.L., Dial, R.J., Sullivan, P.F., Smeltz, T.S., Tobin, S.C., Loso, M., Geck, J.E., 2017. Thermal segregation drives patterns of alder and willow expansion in a montane ecosystem subject to climate warming. J. Ecol. 105, 935–946. Rozema, J., Weijers, S., Broekman, R.O.B., Blokker, P., Buizer, B., Werleman, C., El Yaqine, H., Hoogedoorn, H., Fuertes, M.M., Cooper, E., 2009. Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob. Change Biol. 15, 1703–1715. Schneider, L., Gärtner, H., 2013. The advantage of using a starch based non-Newtonian fluid to prepare micro sections. Dendrochronologia 31, 175–178. Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Ziese, M., 2016. GPCC Full Data Reanalysis Version 7.0: Monthly Land-Surface Precipitation from Rain Gauges Built on GTS Based and Historic Data. Research Data Archive at the National Center for Atmospheric Research. Computational and Information Systems Laboratory, Boulder, CO. Schweingruber, F.H., Eckstein, D., Serre-Bachet, F., Bräker, O.U., 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8, 9–38. Schweingruber, F.H., Börner, A., Schulze, E.-D., 2008. Atlas of Woody Plant Stems – Evolution, Structure, and Environmental Modifications. Springer. Schweingruber, F.H., Hellmann, L., Tegel, W., Braun, S., Nievergelt, D., Büntgen, U., 2013. Evaluating the wood anatomical and dendroecological potential of arctic dwarf shrub communities. IAWA J. 34, 485–497. Serreze, M.C., Barry, R.G., 2011. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96. Tape, K.E.N., Sturm, M., Racine, C., 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702. Tape, K.D., Lord, R., Marshall, H.-P., Ruess, R.W., 2010. Snow-mediated ptarmigan browsing and shrub expansion in Arctic Alaska. Ecoscience 17, 186–193. Tape, K.D., Hallinger, M., Welker, J.M., Ruess, R.W., 2012. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724. Tape, K.D., Gustine, D.D., Reuss, R.W., Adams, L.G., Clark, J.A., 2016. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat. PLoS One 11, e0152636. Tenow, O., Nilssen, A.C., Bylund, H., Hogstad, O., 2007. Waves and synchrony in Epirrita autumnata – Operophtera brumata outbreaks. I Lagged synchrony: regionally, locally and among species. J. Anim. Ecol. 76, 258–268. van der Maaten-Theunissen, M., van der Maaten, E., Bouriaud, O., 2015. pointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia 35, 34–38. Vowles, T., Gunnarsson, B., Molau, U., Hickler, T., Klemedtsson, L., Björk, R.G., 2017. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. J. Ecol. 105, 1547–1561. Weijers, S., Broekman, R., Rozema, J., 2010. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat. Sci. Rev. 29, 3831–3842. Weijers, S., Wagner-Cremer, F., Sass-Klaassen, U., Broekman, R., Rozema, J., 2013. Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. Holocene 23, 721–731. Weijers, S., Buchwal, A., Blok, D., Löffler, J., Elberling, B., 2017. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert. Glob. Change Biol. 23, 5006–5020. Wilmking, M., Hallinger, M., Van Bogaert, R., Kyncl, T., Babst, F., Hahne, W., Juday, G.P., de Luis, M., Novak, K., Völlm, C., 2012. Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30, 213–222. Young, A.B., Watts, D.A., Taylor, A.H., Post, E., 2016. Species and site differences influence climate-shrub growth responses in West Greenland. Dendrochronologia 37, 69–78.
utb.fulltext.sponsorship The research received support (logistics and access to the Kobbefjord research station) from INTERACT (grant agreement No. 262693), under the European Community’s Seventh Framework Programme. We thank station manager Katrine Raundrup for logistical help. JeL was supported by DFG Wi 2680/8-1. JiL was supported by the Internal Grant Agency of Czech University of Life Sciences Prague, Project No. 20154304.
utb.scopus.affiliation Institute of Botany and Landscape Ecology, University Greifswald, Soldmannstr. 15, Greifswald, Germany; Department of Environmental Security, Faculty of Logistics and Crisis Management, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, Zlín, Czech Republic
Find Full text

Files in this item

Show simple item record